Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Поверхности лиофильные

    По какому признаку дисперсные системы делят на лиофобные и лиофильные Чем объяснить самопроизвольное возрастание межфазной поверхности при образовании лиофильных дисперсных систем  [c.154]

    Влияние природы взаимодействующих компонентов иногда выражают через коэффициенты поверхностного натяжения о на границах Т—Ж, Ж—Т, Т—Т, а также угол смачивания 9с, выражающий степень лиофильности. Смачивание твердой поверхности носителя жидкостью (раствором) происходит при всех методах пропитки. Условия смачивания [32] могут быть определены энергетическими соотношениями в системе, т. е. величинами свободной энергии на межфазных поверхностях и соотношением между силами адгезии и когезии [81]. [c.132]


    Отложим по оси ординат избыток свободной энергии 11 5 двух сближающихся поверхностей, между которыми заключена взаимодействующая с ними дисперсионная среда (поверхности лиофильны), а по оси абсцисс— расстояние между ними (рис. 32). [c.87]

    К ним относится структурная составляющая, связанная с перекрытием граничных слоев дисперсионной сре/(ы, имеющих структуру, отличную от структуры жидкости в объеме, которые возникают у твердых поверхностей, лиофильных по отношению к среде. Рассмотрена также адсорбционная составляющая расклинивающего давления, обусловленная перекрытием диффузных адсорбционных слоев при сближении поверхностей. [c.305]

    Возможность соприкосновения газа с твердыми частицами пластической массы — явление не простое в некотором приближении оно схематически может быть представлено только на основе исследований сольватации поверхностей лиофильных коллоидов 1331]. [c.301]

    На поверхности и внутри пор (капилляров) лиофильной мембраны (рис. IV-26), погруженной в раствор электролита, возникает слой связанной воды. Этот слой как бы образует отдельную особую фазу [c.203]

    Отмечено влияние на закономерности фильтрования способности фильтруемой жидкости смачивать поверхность пор осадка и фильтровальной перегородки, что определяется лиофильными или [c.204]

    При смешении низко- и высокомолекулярных соединений кроме формирования ССЕ в объеме на стенках различных поверхностей (сосудов, резервуаров и т. п.) образуются граничные слои, состоящие в основном из высокомолекулярных соединений, склонных к структурированию. Толщина граничных слоев в общем случае зависит от молекулярной массы и природы составляющих компонентов жидкости, от степени лиофильности иоверхности и от величины и вида внешнего воздействия граничных слоев и обусловливает проявление так называемого пристеночного эффекта. [c.139]

    Расчет возможного максимального межфазного натяжения по уравнению (VI. 31) показывает, что для ультрамикрогетерогенных систем в зависимости от размера частиц (от 100 до 1 нм) оно должно меняться в пределах от 1,4-10- до 1,4-10 Дж/м . Несмотря на большую межфазную поверхность в лиофильных дисперсных системах, малое межфазное натяжение обусловливает сравнительно небольшую поверхностную энергию, которая способна компенсироваться энтропийной составляющей. Малое значение межфазного натяжения возможно только при значительном межфазном взаимодействии, характерном для жидких дисперсионных сред. Поэтому термодинамически устойчивыми свободнодисперсными [c.285]


    Укажите признаки лиофильной и лиофобной поверхностей. [c.179]

    Термодинамические факторы, как правило связывают с изменением поверхностного натяжения на границе раздела фаз в системе. Так, например, при неизменности размеров суммарной поверхности частиц дисперсной фазы можно повысить устойчивость системы путем уменьшения поверхностного натяжения на границе их раздела с дисперсионной средой. Понижение уровня избыточной поверхностной энергии будет способствовать приближению системы к лиофильной. [c.24]

    Электронно-микроскопические исследования композиций сажа—связующее [2-137] показали, что поверхность сажевых частичек разделяется на лиофобную и лиофильную части, не смачиваемую и смачиваемую связующим соответственно. [c.144]

    На схеме рис. 2-49 показано, что через лиофобные участки образуется контактная поверхность, лишенная прослоек связующего. Через эту поверхность происходит агрегация частичек. На лиофильной поверхности связующее адсорбируется в виде агрегатов макромолекул. [c.144]

    Соотношения лиофильной и лиофобной поверхностей влияет на степень агрегирования коксовых частичек и распределение показанного на рис. 2-49 переходного слоя по их поверхности. Это, в свою очередь, определяет вязко-упругие свойства композиции. [c.144]

    Регулирование соотношения лиофильных и лиофобных участков поверхности коксовых частичек достигается также при использовании в смесях сажи, натурального графита, антрацита. При этом обеспечивается микрогетерогенность материала, при которой каждый из составляющих компонентов выполняет специально предназначенную ему роль. [c.145]

    Из изложенного выше следует, что смачиваемость связующим углеродных частичек должна быть ограничена определенными пределами для формирования структуры из агрегатов частичек, образующих каркас композиционного материала. В этом состоит важная задача поисков путей образования лиофильно-лиофобных структур на поверхности углеродных порошков. [c.151]

    Вид изотерм расклинивающего давления смачивающих пленок определяется природой действующих поверхностных сил. В зависимости от свойств и состава жидкости, лиофильности и строения твердой подложки решающий вклад могут вносить различные составляющие расклинивающего давления. Только одна из них, а именно молекулярная составляющая Пт, проявляется во всех случаях, поскольку дисперсионные силы действуют между всеми молекулами. Другие составляющие могут оказывать влияние в большей или меньшей степени в зависимости от заряда поверхностей пленки, полярности жидкости и адсорбции растворенных веществ. [c.286]

    Сущность работы. Как известно, в конденсированных пленках молекулы пленкообразующего вещества ориентированы нормально или почти нормально к поверхности своими лиофильными группами. К этому типу пленок, в частности, относятся пленки, образуемые жирными, нерастворимыми в воде кислотами. Однако во многих случаях конденсированную пленку удается превратить в газообразную, например, вводя в молекулу с одной гидрофильной группой второй центр притяжения к воде, расположенный на некотором расстоянии от первого. Две гидрофильные группы в молекуле должны приводить ее в лежачее положение. [c.72]

    Поверхности, для которых угол смачивания изменяется в диапазоне 9О°< 0< 180°, называются лиофобными, а при О°<0< <.90° лиофильными. Если наносимой жидкостью является вода, то различают, соответственно, гидрофобные и гидрофильные поверхности. [c.52]

    Оболочка из полярных групп на поверхности мицелл сообщает им гидрофильные свойства, обеспечивает малую поверхностную энергию и создает сродство мицелл к дисперсионной среде. Указанные особенности состояния растворов МПАВ при концентрациях выше ККМ позволяют отнести их к классу лиофильных коллоидов они являют собой пример термодинамически равновесных и обратимых ультра-микрогетерогенных систем. В таких системах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно (молекулярно) растворенной частью, т. е. существует равновесие мицеллы молекулы (ионы), которое может смещаться в ту или иную сторону при изменении условий. Сами же мицеллы — термодинамически стабильные обратимые образования, которые возникают в области ККМ и распадаются при разбавлении раствора. [c.39]

    Коагуляция осложняется обратным процессом — процессом пептизации или дезагрегации, т. е. переходом коагулята в золь. Этот процесс совершается самопроизвольно без затраты энергии на увеличение поверхности раздела фаз. Пептизация более вероятна в свежеосажденных системах и зависит от лиофильности осажденного золя. Чем выше лиофильность, тем более возможна дезагрегация. С течением времени в коагуляте протекают процессы взаимодействия частиц, приводящие к уменьшению дисперсности и поверхностной энергии. В этом случае коагуляция принимает необратимый характер, и пептизация в системе не происходит. Пептизация может наступить при введении в систему электролита, содержащего потенциалобразующие ионы. Например, амфотерные коагуляты типа А1(0Н)з пептизируются при добавлении щелочей или кислот в небольших количествах, но достаточных для увеличения заряда на частице. Иногда процесс пептизации коагулята может быть вызван при отмывании осадка от электролита (концентрационная коагуляция). Несмотря на кажущееся различие обоих путей (отмывка от электролита и добавление электролита), механизм пептизации в обоих случаях заключается в увеличении потенциальной энергии отталкивания, приводящем к дезагрегации частиц. [c.91]


    Легко видеть, что в то время как необратимые, или лиофобные, коллоидные растворы являются типичными коллоидными системами, обратимые, или лиофильные, системы представляют собою не что иное, как растворы высокомолекулярных соединений. В самом деле, самопроизвольно растворяться в дисперсионной среде и давать растворы с коллоидными свойствами способны только вещества, распадающиеся в растворах на отдельные и притом очень большие молекулы. Такими веществами как раз и являются высокомолекулярные соединения. Самопроизвольное образование типичных коллоидных систем с межфазной поверхностью раздела, как правило, невозможно, так как это противоречит термодинамике. [c.26]

    Вторым методом, составляющим предмет рассмотрения настоящей работы, является метод лиофильной сушки, при помощи которого были получены аэрогели полимеров, обладающие высокоразвитыми поверхностями. Лиофильная (сублимационная) сушка, или так называемый метод замораживания — высушивания, был открыт в 1935 г. Флосдорфом и Маддом [1] и с тех пор чрезвычайно широко распространился в науке и в практике. [c.611]

    Равновесные краевые углы, рассчитанные на основе баланса сил, действующих по периметру смачивания, определяются уравнением Юнга (1.13). Если поверхностное натяженне на границе твердое тело— газ сГг-г больше, чем поверхностное натяжение на границе твердое тело — жидкость ат-м<, то краевой угол 0р < 90°, поверхность твердого тела является лиофильной (при смачивании водой — гидрофильной), К материалам с гидрофильной поверхностью относятся, например, кварц, стекло, оксиды металлов. Жидкость не смачивает поверхность, если Стт-г < огт-ж н Эр > 90°. В этом случае поверхность является лио-фобной (гидрофобной). К материалам с гидрофобной поверхностью относятся металлы, у которых поверхность не окислена, большинство полимеров, а также все органические соединения, обладающие иизко11 диэлектрической проницаемостью. [c.21]

    Если поверхность лиофильная и значит, смачивается водой, то это значит, что сила притяжения к ней молекул воды больше, чем молекул между собой. По этой причине уменьшается степень разуплотнения поверхностного слоя, т.к. он становится ближе к свойствам хаотически бесформенной жидкости. Уменьшение степени разуплотнения воды ведет к уменьшению силы новерхностного натяжения и поэтому поверхностная пленка становится не упругой, а мягкой и податливой для пропикповепия во все неровности твердой поверхности и прилипания к ней. В капиллярах при этом образуется вогнутый мениск. [c.370]

    Значения ККМ соответствуют истинной растворимости ПАВ. При более высокой концентрации ПАВ в растворе образуется ми-целлярная (ассоциативная) коллоидная система. Ранее уже рассматривался процесс самопроизвольного диспергирования, который характерен для коллоидных ПАВ. Растворы коллоидных ПАВ являются классическим примером лиофильных гетерогенных систем— равновесных систем с минимумом энергии Гиббса, несмотря на огромную ыелчфазную поверхность. [c.294]

    Примером термодинамически устойчивых систем с адсорбцион-ио-сольватным фактором являются растворы неионогеиных ПАВ и ВМС. Ориентирование лиофильных частей молекул к растворителю обеспечивает резкое снижение поверхностного натяжения до значений, меньших критического значения (VI. 32). Полярные части молекул обращены в водную среду, а неполярные радикалы — в органическую. Из твердых веществ большой гидрофильностью обладают оксиды многих элементов, например, кремния, алюминия, железа. Поверхность частиц оксидов в воде обычно покрыта гидроксильными группами (гидроксилирована), которые сильно взаимодействуют с водой, образуя гидратные слои. Интересно, что для оксидов факторы устойчивости могут изменяться в зависимости от pH среды. Особенно это сильно выражено для диоксида кремния. Например, гидрозоль кремнезема в области pH 7,0—8,0 устойчив, главным образом, благодаря адсорбционно-сольватному фактору. Он не коагулирует при добавлении электролита даже в [c.338]

    Толщина прослоек уменьшается с увеличением концентрации дисперсной фазы, что соответственно приводит к увеличению прочности структуры, но к уменьшению ее пластических свойств. Как известно, лиофильность поверхности частиц можно изменять с помощью поверхностно-активных веществ, в том числе высокомолекулярных. ПАВ и ВМС могут изменять структуру межчастичных прослоек. Лиофильность поверхности частиц возрастает с развитием двойных электрических слоев, их диффузной части, что обеспечивается заменой всех катионов на поверхности частиц однозарядными катионами щелочных металлов. Этот метод широко используется, например, для увеличения текучести глинистых су -пеизий. [c.384]

    Механизм защитного действия достаточно хороига объясняется теорией Зигмонди, в основе которой лежит представление об адсорбционном взаимодействии между частицами защищаемого и защищающего золей. Более крупная частица гидрофобного золя адсорбирует на своей поверхности более мелкие макромолекулы ВМС с их сольватными (гидратными) оболочками, и в результате этого она приобретает лиофильные (гидрофильные) свойства. В данном случае коллоидные мицеллы необратимого гидрофобного золя предохраняются от непосредственного соприкосновения друг с другом, а следовательно, и от агрегации как в случае действия на такой золь электролита-коагулятора, так и в случае концентрирования золя. На рис. 121, а показана схема подобного защитного действия. Таким образом, высокомолекулярные соединения выступают в роли стабилизатора лиофобных (гидрофобных) золей, То, что именно на адсорбции основано защитное действие, подтверждается не только избирательным характером взаимодействия между макромолекулами ВМС и мицеллами, но и тем, что степень защитного действия увеличивается с концентрацией защищающего раствора ВМС только до полного адсорбционного насыщения поверхности мицелл защищаемого золя. [c.387]

    Если образец разрушается при растирании и содержит воду (многие биохимические препараты), то таблетки готовят методом лиофильной сушки. Для этого к водному раствору вещества добавляют бромид калия и раствор быстро замораживают, разбрызгивая его на холодной поверхности или погружая в хладагент колбу с небольшим количеством раствора, распределенного по стенкам колбы. Вакуумированием образца через ловушку с жидким азотом пз пего полностью удаляют воду, а из полученной тонкой смеси вепгества с бромидом калия прессуют таблетку без предварительного растирания. С помощью конденсоров и других специальных микроприставок можно снять спектр таблетки массой 2 мг, содержащей несколько микрограммов исследуемого вещества, что очень важно при работе с биохимическими препаратами, количества которых часто ограничены. [c.209]

    Таким образом, природные нефти, не подвергнувшиеся термической обработке, представляют собой термодинамически неравновесные и агрега-тивно неустойчивые лиофильные дисперсные системы - золи, в которых дисперсные частицы, способные растворяться в дисперсионной среде, атре-гативно стабилизированы благодаря адсорбции на их поверхности естественных ПАВ, присутствующих в самих нефтях. В нефтях как в лиофильных дисперсных системах плотности энергии в дисперсной фазе и дисперсионной среде различаются незначительно. Поэтому, в отличие от лиофобных дисперсных систем, в которых диспергирование осуществляется с обязательной затратой внешней работы на преодоление межмолекулярных сил при дроблении вещества дисперсной фазы, в нефтях благодаря небольшой межфазной энергии работа диспергирования настолько невелика, что для ее осуществления достаточно энергии теплового движения. При этом возрастание энтропии системы в результате более равномерного распределения диспергированного вещества с избытком компенсирует увеличение свободной поверхностной энергии вследствие возрастания поверхности раздела фаз. Условие самопроизвольного диспергирования выражается неравенством /34 / [c.37]

    Лиофобизация может быть достигнута механохимической прививкой на поверхности частичек, например, высокотемпературного пека или полистирола (добавки при модификации поверхности от 1 до 10% (масс.). Одним из способов получения лиофильной поверхности является нагрев углеродных частичек выше 800 С с целью удаления кислородных групп, в основном фенольных и карбоксильных, с поверхности. При нагревании на воздухе при 250-300 С поверхность становится преимущественно лиофобной и энергетически более однородной [2-138]. [c.145]

    Кроме упомянутых выше, известно применение смесей поверхностно-активных веществ [2-147], например стеариновая кислота—цетиловый спирт, стеариновая кислота — оксиэтили-рованная жирная кислота. Наличие на поверхности углеродных частичек лиофильных и лиофобных участков, связанных главным образом с распределением по поверхности различн1ах типов функциональных групп, обусловливает избирательность действия поверхностно-активных веществ различной природы по отношению к углеродным частичкам с отличающимися свойствами поверхности независимо от их адсорбционной способности. [c.154]

    Как отмечалось выше, гетерогенность поверхности с точки зрения присутствия на ней лиофильных и лиофобных участков имеет важное значение в процессах взаимодействия сажм со связующим. Количество полимера, адсорбированного поверхностью сажи, определяется на электронно-микроскопических снимках высокого разрешения. По данным [4-3], толщины адсорбированных полимерных пленок, полученных из раствора, колеблются от 0,5 нм для неактивных графитированных саж, когда вся поверхность в основном гидрофобна, и для саж с низкой адсорбцией дибутилфталата до выше 3,0 нм для активных са . Толщина пленок адсорбированного полимера увеличивается с ростом содержания сажи и времени смешения. [c.210]

    При расчетах по удельной поверхности сажи толщина граничной пленки составляет 15-20 нм в зависимости от условий смешения и гомогенизации, в частности температуры вальцевания или экструдирования. Если считать, что граничные слои каменноугольного связующего располагаются только на внешней поверхности субагрегатов, то толщина граничных слоев в два раза больше расчетной. Следовательно, лиофильными свойствами обладает только половина поверхности. Толщина пленки связующего уменьшается пропорционально температуре вальцевания [4-29]. После спекания при 300-350°С и последующего быстрого нагрева до кроме ориентированных слоев кокса образуются коксы из мезофазы, имеющие ленточную структуру, а также с глобулярной структурой (рис. 4-16). [c.217]

    Обязательным условием образования истинно-коагуляционных структур является наличие частиц коллоидных размеров (1...100 нм), способных совершать броуновское движение. Дело в том, что в высококонцентрированных системах характерный размер частиц 5t определяется из условия соизмеримости молекулярных сил сцепления и внешних механических воздействий на систему. Причем S на несколько порядков больше размера коллоидных частиц. Распределяясь в общем объеме системы, частицы с 8 5 с образуют в совокупности с более крупными пространственный каркас из цепочек или других агрегатов частиц. Вероятность и скорость образования структур тем больше, чем выше дисперсность частиц коллоидных размеров и чем сильнее вьфажена анизометричность или лио-фобно-лиофильная мозаичность поверхности [185]. [c.103]

    Конденсированные пленки, в которых молекулы нер-аство-римого вещества плотно упакованы и круто ориентированы по отношению к поверхности своими лиофильными группами. К ним относятся пленки жирных кислот, спиртов и других нерастворимых соединений, обладающих лиофильными по отношению к растворителю группами. [c.55]


Смотреть страницы где упоминается термин Поверхности лиофильные: [c.52]    [c.92]    [c.217]    [c.324]    [c.331]    [c.170]    [c.171]    [c.28]    [c.13]    [c.338]    [c.44]    [c.59]    [c.145]   
Учение о коллоидах Издание 3 (1948) -- [ c.187 ]




ПОИСК







© 2025 chem21.info Реклама на сайте