Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Функции белков

    Во-вторых, белковая цепь может по-разному располагаться в пространстве. Последовательность аминокислот в белке задает его форму, а форма определяет функции белка. Расположение аминокислот в пространстве, способ скручивания цепи — называется вторичной структурой белка. [c.452]

    Форма белковой цепи определяет функции белка в клетке или организме. Некоторые белки сворачиваются в клубок (глобулярные белки). Другие остаются развернутыми для них характерно взаимодействие боковых групп соседних цепей с образованием плоских илн линейных структур (фибриллярные белки, рис. У11.8 . [c.453]


    Химическая связь между атомами, образованная двумя электронными парами Денатурация Нарушение структуры и функции белка при воздействиях, не свойственных нормальным природным процессам [c.544]

    Биохимические и биофизические функции белков определяются не только их композиционным составом, но и особенностями первичной структуры (последовательностью звеньев и ДР-)- [c.337]

    Назовите по крайней мере четыре различных функции белков в организмах животных. [c.467]

    Значение коллоидной защиты для биологии и фармации чрезвычайно велико. Принцип коллоидной защиты используют при получении колларгола, золей серебра, золота и т, д. Частицы колларгола так хорошо защищены, что не коагулируют даже при высушивании, Белки крови защищают капельки жира, холестерин и другие гидрофобные вещества от коагуляции. Ослабление защитных функций белков крови приводит к отложению холестерина на стенках сосудов, образованию камней в почках, печени и т. п. [c.439]

    Функции белков в организме очень разнообразны. Помимо белков, которые входят в состав опорных и покровных тканей, обеспечивая [c.13]

    Основной интерес химиков и биологов сосредоточен на установлении взаимосвязи строения и функции белка. Пептиды и белки могут содержать в молекуле как основные (—NH2, O2 ), так [c.299]

    Охарактеризуйте функции белков в организме. [c.655]

    Одной из важнейших функций белков является нх способность выступать в качестве специфических катализаторов ферментов), обладающих исключительно высокой каталитической активностью. Без участия ферментов не происходит почти ни одна химическая реакция в живом организме. В настоящее время известны тысячи различных белков-ферментов, и каждый из них построен так, чтобы наилучшим образом катализировать определенную химическую реакцию. Например, расщепление перекиси водорода [c.446]

    Эта книга — первый том учебника по молекулярной биологии, который планируется издать в трех томах. Второй том этого учебника Молекулярная биология Структура рибосом и биосинтез белка , написанный А. С. Спириным, вышел в издательстве Высшая школа в 1986 г. Выход в свет третьего тома, посвященного структуре и функциям белков, планируется несколько позже. [c.3]

    В то время когда проводилось картирование г//-области, мало что было известно о функциях белков, детерминируемых этими двумя ци-стронами. Сейчас же мы знаем, что как белок гПА, так и белок гПВ включаются в мембраны бактериальных клеток, инфицированных фагом [132, 133]. Там они облегчают лизис зараженных клеток, в результате чего стерильные пятна, образуемые г//-мутантами, бывают больше по размеру, а их края — более четкими, чем в случае стандартных бляшек. [c.251]


    В связи с этим, здесь же следует обсудить такой вопрос, как целесообразность биосинтеза тех или иных веществ в живой клетке. Если в отношении продуктов первичного биосинтеза, в основном, все понятно функции белков, нуклеиновых кислот, углеводов и жиров достаточно ясны и многообразны — то относительно наших знаний о роли продуктов вторичного метаболизма в жизнедеятельности организмов, их продуцирующих, этого сказать нельзя. Бытует даже такое мнение, что эти вещества — отбросы жизнедеятельности живых клеток. Безусловно, такие [c.7]

    Как же осуществляются в природе такие многообразные функции белков при монотонности их строения, позволяющей относить безграничное число соединений к одному определенному классу  [c.433]

    Каковы две основные функции белков в клетке, одна функция ДНК, две функции РНК, одна функция липидов  [c.64]

    Том 4. СТРУКТУРА И ФУНКЦИЯ БЕЛКА [c.2]

    БИОЛОГИЧЕСКИЕ ФУНКЦИИ БЕЛКОВ [c.26]

    Опираясь на быстро растущий объем знаний в области молекулярной биологии, отечественные традиции в исследовании нуклеиновых кислот и собственный опыт работы, автор данного учебника подготовил в 1964 г. и начал чтение курса лекций по молекулярной биологии в Московском государственном университете. Конечно, с течением времени курс эволюционировал и расширялся, и теперь он состоит из трех частей ( Строение и биосинтез нуклеиновых кислот , Структура рибосом и биосинтез белков и Структура и функции белков ). В основу предлагаемой книги положена та часть курса лекций, которая посвящена структуре рибосом и биосинтезу белка. [c.4]

    В ЭТОМ случае функция белка требует большого числа доменов. Оказалось, что эту функцию могут независимо выполнять домены, которые расположены или на одной полипептидной цени, или на отдельных полипептидных цепях, связанных невалентными силами, или на совершенно разных цепях. [c.60]

    Общая функция дисульфидных связей состоит в повышении стабильности свернутых белков (см. разд. 8.4 и работы [94] и [108]). Поэтому не вызывает удивления тот факт, что разрушение некоторых мостиков S—S не влечет за собой нарушения функций белка табл. 4.1). Например, в случае а-амилазы можно восстановить все три дисульфидных звена и это не уменьшит ферментативной активности [109]. Однако известно много примеров белков, в которых дисульфидные связи несут весьма специфические функции. [c.67]

    Многообразные функции белка СЗ комплемента и продуктов его расщепления [c.76]

    Белки являются полиамфолитами, т. е. они содержат как положительно, так и отрицательно заряженные ионогенные группы. Для всех полиамфолитов характерна зависимость их заряда от pH при низких pH они заряжены положительно, при высоких - отрицательно. Для каждого белка существуют такие значения рР1, при которых суммарный заряд молекулы равен нулю. Это значение pH определяется как изоэлектрическая точка. Очевидно, что изоэлектрическая точка полипептидной цепи определяется природой входящих в нее аминокислотных звеньев (см. табл. 6.7). Следует подчеркнуть, что все функции белков реализуются только в присутствии воды, т. е. в растворе или в набухшем состоянии. [c.340]

    Протеолитические ферменты всегда были объектами переднего края развития энзимологии. Некоторые из них были-в числе первых белков, которые удалось выделить в кристаллическом состоянии. В настоящее время они стали модельными объектами всестороннего изучения взаимосвязи между структурой и функцией белков [1]. Исторические этапы этого более чем 50-летнего пути весьма полно освещены в монографии В. В. Мосолова [2]. [c.126]

    В мире животных и растений все химические процессы характеризуются ферментами, представляющими собой белки со строго специализированными функциями. Белки, в том числе и ферменты, образуют псевдоколлоидные растворы, относящиеся по размеру частиц к коллоидным. По ряду других свойств они сходны, наоборот, с истинными растворами так, у белков отсутствует поверхность раздела с растворителем. В растворах, в которых идут ферментационные процессы, нет типичной гетерогенности среды, так как нет поверхностей раздела фаз. Поэтому процессы, протекающие при участии ферментов, относят к микрогетерогенному катализу. [c.99]

    Соединенные пептидной связью аминокислоты образуют поли-пептидную цепь. Чередование аминокислот в этой цепи является важнейшим фактором, определяющим биологическую функцию белка и его специфичность для того или другого вида животных. Длина таких цепочек и, следовательно, число входящих в них аминокислот, по-видимому, постоянно для разных белков. Так, в инсулин входят две цепочки из 30 и 21 аминокислоты, в рибону-клеазу — одна цепочка из 124 аминокислот и т. п. [c.199]

    Вторая важнейшая функция белков состоит в том, что они определяют механо-химическне процессы в живых организмах, в результате которых поступающая с пищей химическая энергия непосредств енно превращается в необходимую для движения организма механическую энергию. Подсчитано, что человек в среднем потребляет за сутки такое количество энергии, которого хватило бы для того, чтобы довести до кипения около 30 л ледяной воды. [c.447]


    Третьей важной функцией белков является их использование в качестве материала для построения важных составных частей орга(И1зма, обладающих достаточной механической прочностью, начиная с полупроницаемых перегородок внутри клеток, оболочек клеток и их ядер и кончая тканями мынщ и различных органов, кожи, ногтей, волос- и т. д. [c.450]

    Свою биологическую функцию белки выполняют, только если сохраняются вторичная и третичная структуры. Разрушение третичной и вторичной структур называется денатурацией белка. При денатурации сохраняется только первичная структура белка, т. е. пептидная цепь. Денатурация белков мох<ет произойти под действием химических веществ (кислот, щелочей, спиртов, ацетона), при нагревании, повышепии давления, радио-акгнвном облучении. [c.449]

    Рекомбинационные процессы играют также ведущую роль в эволюции строения гено.мов в цело.м. Дело в том, что перестройки генетического материала часто можно объяснить реко.убинацией. между гомологичными последовательностями, оказавшимися в негомологичном положении (роль таких последовательностей могут выполнять, напри.мер, мобильные генетические эле.менты см. гл. V). На рис. 81 (с.ч. с. 126) показан один важный частный случай ошибочной реко.мбинации — неравный кроссинговер. В результате этого процесса генетический материал одной из гомологичных хро.мосом делетн-рует, но в другой хромосоме возникает дупликация. Считается, что такие дупликации играют важную роль в возникновении родственных, но различных генов, поскольку присутствие в геноме лишних копий какого-либо гена позволяет и.м сравнительно свободно из.че-няться, что, в принципе, может привести к возникновению новых функций белка — продукта гена. По всей вероятности, это один из путей возникновения. мультигенных семейств, характерных для геномов высших эукариот и кодирующих белки со сходными, но различными функциями. [c.109]

    Какие химические процессы лежат в основе супрессии (подавления) одной мутации другой мутацией, локализованной в иной точке хромосомы Однозначного ответа на этот вопрос дать нельзя. Редко мутация супрессируется другой мутацией, локализованной в пределах того же самого гена. Такой эффект может быть назван внутригенной комплементацией. Предположим, что мутация приводит к такой аминокислотной замене, которая нарушает стабильность структуры или функцию белка. Возможно, что мутация в другом сайте, захватывая остаток, взаимодействующий с замещенной аминокислотой, меняет характер взаимодействия двух остатков, что приводит к восстановлению функциональной активности белка. Так, например, если боковая цепь первой аминокислоты мала, а в результате мутации она замещается на более длинную боковую цепь, то вторая мутация, приводящая к уменьшению размера другой боковой цепи, может позволить образующемуся белку свертываться и функционировать подобно нормальному белку. Такой случай был обнаружен среди мутантов триптофансинтетазы [144]. Мутанты этого белка, у которых Gly-211 был заменен на Glu нли Туг-175— на ys, синтезировали неактивные ферменты, тогда как двойной мутант, т. е. мутант, в котором имели место обе эти замены, синтезировал активную триптофансинтетазу. Считают, что в большинстве случаев внутригенной супрессии происходят изменения во взаимодействии субъединиц олигомерных белков. [c.255]

    Технология рекомбинантных ДНК включает набор как новых методов, так и заимствованных из других дисциплин, в частности из генетики микроорганизмов. Эти методы существенно расширяют возможности генетических исследований. Используя технологию рекомбинантных ДНК, получают даже минорные клеточные белки в больших количествах и проводят тонкие биохимические исследования структуры и функций белков, а также осуществляют детальный химический анализ генетического материала. К наиболее важньпм методам биотехнологии рекомбинантных ДНК следует отнести следующие  [c.106]

    Четвертичная структура может быть как гомогенной, так и гетерогенной. В первом случае в функциональную структуру ассоциированы только идентичные полипептидные цепи, в то время как элементами белков с гетерогенной четвертичной структурой являются неидентичйые цепи. Оказалось, что у глобулярных белков с Л/ > 50 ООО всегда доминирует четвертичная структура. До 1974 г. было известно приблизительно 650 белков с четвертичной структурой, из них 500 ферментов. Принцип образования четвертичной структуры имеет важное значение для функции белка. Например, становятся возможными кооперативные реакции, имеющие значение для регуляторных процессов в клетке. [c.386]

    Среди многочисленных компонентов биосистем молекулярного уровня исключительная роль в процессах жизнедеятельности, бесспорно, принадлежит белкам. Активно участвуя практически во всех протекающих в клетках и организме процессах, они наделены поистине универсальными биофизическими и биохимическими свойствами. Белки обладают способностью к взаимному превращению всех необходимых для жизни видов энергии тепловой, механической, химической, электрической и световой. Кроме того, они входят в состав соединительных и костных тканей, кожи, волос и других структурных элементов всех уровней живого организма, выполняя динамическую опорную функцию и обеспечивая нежесткую взаимосвязь органов, их механическую целостность и защиту. Нет смысла перечислять все функции белков, спектр их действия огромен. Отметим лишь, что по разнообразию своих физических и химических проявлений белки несопоставимы с возможностями любого другого класса соединений живой и неживой природы. Они "умеют" делать все, и именно поэтому назначение генетического аппарата любого живого организма сведено к хранению информации только о белках и к их синтезу. Биосистемы всех уровней, в том числе и молекулярного, можно считать "произведениями" белков. При функциональной универсальности природных аминокислотных последовательностей деятельность каждого отдельного представителя этого класса уникальна в отношении функции, механизма действия, природы лиганда и внешней среды. И, наконец, белки проявляют высочайшую активность в физиологических, мягких условиях и не образуют при своем функционировании побочных продуктов. [c.50]

    Кристаллическая структура белка - это очень сложным образом полученная и, по-видимому, самая дорогая во всех отношениях фотография. Представленное на ней изображение позволяет увидеть многие детали внутреннего устройства белковой глобулы. Но, как и любая другая фотография, она не раскрывает ирироды внутренних связей и принципы организации изображенного объекта, его возможного поведения при изменении внешних условий. Кристаллография белка - это морфология биосистемы молекулярного уровня. Для перехода к изучению физиологии белка одной фотографии кристаллической структуры белка, т.е. одной морфологии, недостаточно. На приведенной ниже схеме показана цепочка субординационных взаимоотношений между функцией белка (в данном случае, фермента) и его химическим и пространственным строением. Из схемы видно, что наблюдаемая структура белковой молекулы не имеет непосредственной связи с реализуемой каталитической функцией. Существующая же связь, во-первых, направлена не от функции к структуре, а от структуры к функции, т,е, в сторону, противоположную традиционному направлению поиска, и, во-вторых, включает три промежуточных звена и требует последовательного решения трех задач. [c.76]

    В своих физиологических функциях белки очень высокоспецифичны. Например, фермент может расщеплять а-глюкозиды, но не р-глюкозиды или фермент будет отщеплять лишь С-концевые аминокислотные остатки в полипептиде. Биологическая активность белка зависит не только от характера его простетической группы (если она вообще имеется) и данной последовательности аминокислот, а также от формы его молекулы. Как сказал Э. Фишер в 1894 г. ... фермент и глюкозид должны подходить друг к другу, как ключ к замку... . [c.1061]

    Комплекс нативной 40S субчастицы с инициаторной метионил-тРНК (включающий некоторые факторы инициации и ГТФ) вступает в ассоциацию с мРНК. На этом этапе абсолютно необходимым оказывается eIF-3. Механизм его действия не ясен. Предполагается, что он, будучи связанным с нативной 40S субчастицей, участвует в формировании центра, узнающего мРНК. Ему приписывают также функции белка, способствующего расплетанию вторичной структуры матричного полинуклеотида в [c.250]


Библиография для Функции белков: [c.406]    [c.1075]   
Смотреть страницы где упоминается термин Функции белков: [c.259]    [c.4]    [c.176]    [c.181]    [c.86]    [c.246]    [c.249]    [c.402]    [c.485]    [c.294]    [c.5]   
Смотреть главы в:

Биологическая химия Изд.3 -> Функции белков

Введение в молекулярную биологию -> Функции белков

Биологическая химия -> Функции белков




ПОИСК







© 2024 chem21.info Реклама на сайте