Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы отделения и концентрирования золота

    МЕТОДЫ ОТДЕЛЕНИЯ И КОНЦЕНТРИРОВАНИЯ ЗОЛОТА [c.77]

    Методы отделения и концентрирования золота с использованием носителей целесообразно разделить на две группы. [c.79]

    Методы отделения и концентрирования золота химическим путем описаны в работах [62, 128, 350, 714, 759, 764—766, 967, 1262]. [c.84]

    Метод с родамином С применен для анализа горных пород [256], с кристаллическим фиолетовым — руд и горных пород [59]. Для концентрирования золота в обоих случаях применяют осаждение его в элементарном состоянии на коллекторе-теллуре, в первом варианте — сернистой кислотой и гидразином из ЗН НС1, во втором — хлористым оловом и гидразином из соляно-азотнокислых растворов. Эта операция не обеспечивает отделения золота от ртути мешающее влияние последней при извлечении хлораурата кристаллического фиолетового толуолом может быть устранено посредством строгого нормирования кислотности раствора [57, 59]. Определению мешают микрограммовые количества сурьмы и таллия, адсорбируемые осадком при высоких содержаниях этих элементов в пробе. [c.153]


    Интересный метод отделения и полуколичественного определения 0,1—100 мкг золота основан на его восстановлении до металла в разбавленных или концентрированных растворах кислот и адсорбции на поверхности тонкоизмельченного хлорида ртути(1) [739]. При добавлении 0,1 г хлорида ртути 1) к растворам, содержащим 0,05—200 мкг золота, цвет осадка в зависимости от концентрации золота приобретает различные оттенки от розового до темно-красного. Авторы [739] определяли таким [c.275]

    В книге рассматриваются химические свойства золота и его важнейших соединений. Приведены методы обнаружения золота, способы его отделения от мешающих ионов и концентрирования, а также химические, физико-химические и физические методы определения золота (включая разнообразные природные и промышленные объекты), рассмотрены способы определения примесей в золоте и его соединениях. [c.264]

    Отделение и концентрирование серебра соосаждением на металлах. Распространен метод выделения следовых количеств серебра осаждением с элементным теллуром, образующимся при прибавлении хлорида олова(П) к анализируемому раствору, содержащему теллурит-ионы. Миллиграммовые количества серебра этим способом количественно отделяются от больших количеств Fe(III), N1, Со, As, Pb и других элементов. Вместе с серебром на теллуре осаждаются также золото и платина. От зтих металлов серебро легко отделить, растворяя осадок в азотной кислоте. В присутствии 0,2 г меди осаждение серебра неполное, если его первоначальное количество в растворе превышает 5 мкг. В этом случае остаток серебра легко осаждается после добавления теллурита к фильтрату после первого осаждения. Методика анализа сводится к следующему. [c.142]

    Во многих случаях осуществлению анализа предшествует разделение исследуемой пробы на фракции с целью увеличения концентрации анализируемого вещества или отделения его от мешающих компонентов. Кроме разделения осаждением, к важнейшим методам разделения относятся ректификация. экстракция, различные виды хроматографии. Поскольку в настоящем справочнике специальные сведения по методам разделения не приводятся, укажем на важнейшие руководства по соответствующему кругу вопросов 1. Э. Крель. Руководство по лабораторной ректификации. М ИЛ. 1960.— 2. Ю. А. Золотов. Н. М. Кузьмин. Экстракционное концентрирование. М., Химия , 1971.-3. Дж. Моррисон, Г. Фрейзер. Экстракция в аналитической химии. М., Госхимиздат. 1960.— 4. Справочник по экстракции. Т. 1. М.. Атомиздат. 1976. — 5. А. А. Морозов. Хроматография 6 неорганическом анализе. М.. Высшая школа . 1972.— 6. Э. 111 т а л ь. Хроматография в тонких слоях. М., Мир , 1965. — 7, [c.324]


    Золото приходится определять в природных и промышленных Объектах самого разнообразного происхождения. Как правило, большие количества золота определяют гравиметрическим методом (см. главу 4), не утратившим для этих целей своего значения. Малые количества золота (10-4—10-10%) определяют современными физическими и физико-химическими методами, в частности радио-активационным, спектральным, полярографическим, флуоримет-рическим, фотометрическим и другими. В сочетании с методами отделения и концентрирования золота — экстракцией, хроматографией, соосаждением и другими — эти методы позволяют надежно определять золото с высокой чувствительностью. Физические и физико-химические методы определения золота описаны в главах 6—10, методы отделения и концентрирования золота приведены в главе 3. [c.196]

    Определение. Качественно Р. обнаруживают в виде HgjNH2 l, HgS, а также атомно-абсорбционным, эмиссионным спектральным, фотометрич. и др. методами. Гравиметрически Р. определяют в виде металла, HgS, Hg2 l2, перйодата Hg5(IOg)2. Пробу руды разлагают при нагр., Р. отгоняется в присут. восстановителя (порошок Fe илн Си) под шубой из ZnO. Образующуюся Р. собирают на холодной золотой пластинке, к-рую по окончании анализа промывают и взвешивают. При низком содержании Р. в рудах используют кислотное разложение руд с добавлением фторида для растворения кварца и силикатов, содержащих Р. в высокодисперсном состоянии затем проводят концентрирование путем отделения примесей др. элементов экстракцией разл. комплексных соединений Р. (галогенидов, роданидов, дитиокарбаматов и др.). При прокаливании и сплав-ле.нии рудных концентратов и соединений Р. с содой Р. полностью удаляется в виде металла. Для подготовки аналит. пробы используют сочетание экстракции с термич. восстановлением и отгонкой Р. подготовленную пробу можно анализировать любым из перечисленных выше методов. Термич. восстановление используют также для качеств, обнаружения Р. даже при низких ее концентрациях. При фотометрич. определении Р. в качестве реактива используют 1-(2-пиридилазо)-2-нафтол, позволяющий определять микрограммовые кол-ва. Следы Р. также м. б. определены при помощи дитизона, используемого как гри фотометрич., так и при титриметрич. определении. [c.279]

    Тиогликолевую кислоту применяют для гравиметрического определения золота [1249], тионалид — для амперометрического [7851 определения и концентрирования [599] золота, а изооктил-тиогликолевую кислоту — для группового отделения золота методом хроматографии на бумаге [970]. [c.43]

    Спектральные методы используются наиболее часто благодаря высокой чувствительности. Разработаны методы определения 34 примесей. Максимальная чувствительность 5-10 % получена при определении меди и серебра [982]. Самая низкая чувствительность [173] — при определении Са, Ва, ЗЬ, ТЬ, Ьа, 1г, Оз, Н , (0,01%), N3(0,02%), Та, 0(1, Зг, Ы (0,03%), Аз (0,06%), Р, и, Се (0,1%), В, Те (1%). Чувствительность определения мо5рно повысить [647] для Оа, 2п, В, Си, В1, А , Ге, 81, Зп и ЗЬ до 10 % концентрированием примесей на конце вспомогательного электрода испарением при 2000° С после отделения золота. [c.214]

    Концентрирование и отделение серебра другими органическими реагентами. Краситель дитио-р-изоиндиго был рекомендован [412] в качестве соосади-теля следов серебра и некоторых других металлов для выделения микрограммовых количеств серебра, золота, меди, кобальта и цинка достаточно 4 мг реагента. Было найдено, что 4-меркапторезор-цин образует комплексы с ионами серебра и многих других катионов, что может быть использовано для растворения гидроокисей зтих элементов [679]. Для предварительного концентрирования следов элементов описан метод ионной флотации [243]. [c.148]

    Статистический способ заключается в перемешивании небольших количеств сорбента в колбе с раствором, содержащим определяемые микропримеси. В работе [53] в качестве сорбента применен активированный уголь для определения золота, платины и палладия в горных породах с чувствительностью до 1,5-10 % и ионообменные смолы для концентрирования РЗЭ [52]. После отделения примесей сорбент отделяют, высушивают, озоляют и золу подвергают спектральному анализу. Способ весьма заманчив в связи с его простотой и возможностью проводить разделение металлов из малых объемов. Однако этот метод весьма ограничен изтза сильного загрязнения активированных углей и смол наиболее распространенными элементами (Fe, Си, Са, Mg, Мп и др.). [c.178]

    Селективная экстракция золота, палладия, иридия из сол янокислых и серебра из азотнокислых растворов диалкилсульфидами и сульфидами нефти использована для концентрирования этих элементов в ряде методик их радиоактивационпого [59—64] и полярографического определения [65, 66 ] в горных породах, минералах, рудах и других объектах сложного состава. Экстракция золота, серебра, палладия диалкилсульфидами и нефтяными сульфидами (а иногда сульфоксидами) успешно применяется для отделения и концентрирования металлов при атомпо-абсорбционном их определении [13, 44, 67—79], а также при определении спектральным методом [80—82]. Раз- работаны методы химико-сцектрального и атомно-аб- [c.21]


    Описано много случаев применения соосаждения для выделения следов элементов при содер/каниях порядка 10" —10" %. Семнадцать элементов (А1, Со, Сг, Си, Ге, Оа, Ое, Мп, Т1, N1, V, В1, РЬ, Мо, d, 2п и Ве), содержащихся в природной воде, осаждали оксихинолином, таннином и тио-налидом и определяли методом эмиссионной спектроскопии при содержаниях до 10" % [107]. Примерно 7-10" % золота в морской воде осаждали сокри-сталлизацией с 2-меркаптобензимидазолом при pH 1 и определяли спектрофотометрически [108]. Также 3-10" % урана в морской воде осаждали сокристаллизацией с сс-нитрозо-р-нафтолом при pH 7—8 и определяли флуо-рометрически [109]. Сокристаллизацию с тионалидом применяли для концентрирования серебра в морской воде при содержаниях менее 10" % [110]. Для концентрирования молибдена из морской воды использовали сокристаллизацию с а-бензоиноксимом [111]. Си, Ре, РЬ, Мп, N1, 8п и 2п в хлориде, бромиде, иодиде и нитрате калия, хлориде, бромиде и нитрате натрия осаждали оксихинолином и тионалидом из горячего раствора при pH 9 в присутствии алюминия в качестве элемента-носителя и определяли затем эмиссионной спектроскопией при содержаниях до 10" % [112]. Следы Сг, Со, N1, 2x1, Ag, V, Мо, Ве, Ое, Оа, Зп, РЬ, Аи и Т1 в различных биологических образцах определяли методом эмиссионной спектрографии после озоления образцов и отделения от щелочных и щелочноземельных металлов, фосфатов, сульфатов и галогенидов соосаждением с оксихинолином, таннином и тионалидом при pH 5,2, используя алюминий в качестве элемента-носителя [ИЗ—115]. Подобные методы описаны таюке в работах [116, 117]. [c.101]

    Серебро [456, 457], золото [458, 459], платина [460] и палладий [461] могут быть выделены из 2,5-500 мл кислых или аммиачных растворов проб при перемешивании магнитной мешалкой на капельках ртути диаметром 1 мм и обпщм объемом 0,5-2 мл в обычном химическом стакане за время от 30 мин до нескольких часов. Матричные элементы (Си, РЬ и Fe) остаются в растворе. Образовавшуюся разбавленную амальгаму отделяют от раствора декантацией и ртуть удаляют отгонкой. При использовании водно-ртутной эмульсии (размер частиц ртути составляет 1-4 мкм), образующейся под воздействием ультразвука, концентрирование серебра происходит в течение 1 мин [462]. Этот метод концентрирования использован при спектрофотометрическом и атомно-абсорбционном определении 10 -10 г/г серебра и золота в меди и свинце. Степень извлечения составляет более 95%, коэффициент концентрирования достигает 10 -10 . Подобная методика использована для отделения золота при анализе свинцовых концентратов [463]. [c.82]


Смотреть страницы где упоминается термин Методы отделения и концентрирования золота: [c.213]    [c.213]    [c.83]    [c.24]    [c.196]   
Смотреть главы в:

Аналитическая химия золота -> Методы отделения и концентрирования золота




ПОИСК





Смотрите так же термины и статьи:

Методы концентрирования

Методы отделения

Методы отделения и концентрирования



© 2024 chem21.info Реклама на сайте