Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Демеркаптанизация

Рис. 9.6. Принципиальная технологическая схема процесса катали пической окислительной демеркаптанизации углеводородного сырья "Мерокс" I— сырье II— воздух III— регенерированный раствор щелочи ("Мерокса") IV— отработанный воздух V— дисульфиды VI— циркулирующий раствор щелочи ("Мерокса") VI - свежая щелочь VIII— очищенный продукт Рис. 9.6. <a href="/info/1480765">Принципиальная технологическая схема процесса</a> катали пической <a href="/info/1462311">окислительной демеркаптанизации</a> <a href="/info/56117">углеводородного сырья</a> "<a href="/info/661523">Мерокс</a>" I— сырье II— воздух III— регенерированный <a href="/info/122345">раствор щелочи</a> ("<a href="/info/661523">Мерокса</a>") IV— отработанный воздух V— дисульфиды VI— <a href="/info/904491">циркулирующий раствор</a> щелочи ("<a href="/info/661523">Мерокса</a>") VI - <a href="/info/1844674">свежая щелочь</a> VIII— очищенный продукт

    Окислительная демеркаптанизация сжиженных газов и бензино-керосиновых фракций [c.168]

    Существует две разновидности процессов демеркаптанизации топлив, в одной из которых катализатор - фталоцианин кобальта - применяется в растворённой в водно-щелочном растворе форме, в другой - катализатор нанесён на твёрдый носитель, в качестве которого обычно используется активированный уголь. [c.21]

    Поэтому, если содержание общей серы в дизельных топливах и керосинах не превышает 0,5 %, а в бензинах - 0,2 %, то за рубежом используют экономичные процессы окислительной демеркаптанизации. Возможна также очистка бензинов и с более высоким содержанием общей серы в тех случаях, если доля демеркаптанизированного бензина в товарном продукте будет сравнительно невысока. Это связано с тем, что в процессе окислительной демеркаптанизации общее содержание серы в топливах не снижается, а происходит лишь перевод меркаптанов в дисульфиды. Дисульфиды в отличие от меркаптанов инертны по отношению к металлам, имеют более высокую температуру кипения, т.е. менее летучи, являются ингибиторами окисления [15,52]. [c.20]

    Компаундирование и демеркаптанизация способствовали расширению сырьевой базы топлив, поскольку в переработку были вовлечены нефти с высоким содержанием тиолов в керосиновых фракциях. Снижение содержания в топливе коррозионно-активных сернистых соединений в результате этих процессов позволило улучшить качество топлива ТС-1 по показателю коррозионная агрессивность . Вовлечение в переработку менее сернистых нефтей Западной Сибири также способствовало снижению коррозионной агрессивности топлива ТС-1. В результате исключения из технологического процесса защелачивания и водной промывки улучшены противоизносные свойства топлива ТС-1 [13]. [c.12]

    Ниже приведены данные по содержанию меркаптанов после О ,ис ительной демеркаптанизации различного сырья в процессе "Мерокс"  [c.170]

    Существуют различные способы очистки нефтяных дистиллятов от сернистых соединений. Среди них широкое применение нашла каталитическая гидроочистка и экстракция сернистых соединений из нефтепродуктов различными экстрагентами. В случае необходимости очистки топлив только от меркаптанов в основном используют способы окислительной демеркаптанизации. [c.10]

    В настоящее время производство топлива Т-1 практически прекращено, а ТС-1 по-прежнему остается наиболее массовым топливом для реактивной авиации. Однако в 70-х годах в сырьевой базе, технологии производства и качестве топлива ТС-1 произошли существенные изменения. Наряду с прямогонным применяют компаундированное топливо ТС-1, получаемое смешением прямогонного и гидроочищенных компонентов, а также топливо, очищенное от тиолов (меркаптанов) с помощью процессов селективной демеркаптанизации [12]. [c.12]


    Из работ российских исследователей в области окислительной каталитической демеркаптанизации наибольшего внимания заслуживают разработки, закончившиеся промышленными внедрениями, НИИнефтехим, г. [c.20]

    Ддя очистки низкомолекулярных фракций (например, сырья а/килирования), не содержащих высокомолекулярных меркаптанов, используется упрощенный (экстракционный) вариант процесса, где стадия дополнительной окислительной демеркаптанизации в ре акторе —2 исключена. [c.170]

    В отечественной и зарубежной нефтезаводской практике чссто используют, помимо гидроочистки, процессы окислительной Кс талитической демеркаптанизации сжиженных газов — сырья а/килирования и бензинов, реже авиакеросинов. Среди них наибольшее распространение получили процессы "Бендер" и "Ме — [c.168]

    Автор защищает научные основы выбранных путей интенсификации процессов демеркаптанизации нефтяных дистиллятов и новых способов получения базовых компонентов авиабензина. [c.7]

    В бензиновых, керосиновых и дизельных дистиллятах содержатся высокомолекулярные меркаптаны, и извлечение их представляет достаточно сложную проблему. Поэтому демеркаптанизация этих видов сырья сводится к окислению меркаптанов до дисульфидов непосредственно в самом сырье без предварительного извлечения. Очевидно, что при этом общее содержание серы в сырье не меняется, а изменяется лишь её химическая форма меркаптаны, обладающие неприятным запахом и коррозионной активностью, переходят в инертные дисульфиды. [c.21]

    Описание установки для демеркаптанизации дизельного топлива [c.35]

    В процессе демеркаптанизации прямогонной керосиновой фракции в качестве катализатора использовали различные марки активного угля, на поверхность которого наносили активный компонент - катализатор Ивказ. Уголь активный марок АГ-3 и АГ-5 (ГОСТ 20464-75 и ГОСТ 20777-75) имеет развитую удельную поверхность ( 200 м г) и высокую механическую прочность. Катализатор Ивказ выполняет функции переносчика кислорода и [c.31]

    Недостатками экстракционного способа демеркаптанизации являются также большой расход щелочи, образование сернисто-щелочных стоков и низкая эффективность способа по отношению к тяжелым (С4 и выше) меркаптанам. [c.19]

    Предварительное сульфидирование катализаторов гидроочистки является важным средством повышения активности катализаторов гидрообессеривания и гидродеазотирования [78,79,134-137]. Существуют различные способы сульфидирования. В частности, рекомендуется проводить сульфидирование катализаторов гидрогенизационных процессов сероводородом. При этом достигается наиболее высокая степень сульфидирования [142], но применение этого способа затруднено из-за высокой токсичности и коррозионной активности сероводорода и сложности его дозирования. Наиболее широко в промышленных условиях применяется сульфидирование катализатора серусодержащей нефтяной фракцией или индивидуальными сераорганическими соединениями [38,79]. Например, дистиллятная нефтяная фракция с высоким содержанием серы пропускается через катализатор в течение 1-2 суток в режиме гидроочистки (давление 3-15 МПа, температура 300-450 С). Однако при этом полного сульфидирования катализатора не достигается вследствие экранирования части активных центров отложениями кокса. Наиболее эффективным является метод сульфидирования специальными серусодержащими веществами [78], такими могут служить сероуглерод, диметилсульфид, н-бутил меркаптан, диметилдисульфид, ди-третнонилполисульфид. Однако применение сероуглерода и меркаптанов сдерживается нормами по охране окружающей среды. Поэтому наиболее успешно применяются диметилдисульфид и диметилсульфид, обладающие низкими температурами разложения (250 С) и дисульфидное масло, получаемое на установке демеркаптанизации ДМД-2. [c.15]

    Процессы демеркаптанизации бензинов по своим техникоэкономическим показателям не имеют равных. Для примера в ценах 1980 года можно сопоставить соответствующие показатели процесса демеркаптанизации и гидроочистки бензинов на установке Л-24-14Б. [c.22]

    Коррозионная активность бензинов обусловливается наличием в них неуглеводородных примесей, в первую очередь, сернистых и кислородных соединений и водорастворимых кислот и щелочей. При квалификационных испытаниях она оценивается кислотностью, общим содержанием серы, содержанием меркаптановой серы, испытанием на медной пластинке и содержанием водорастворимых кислот и щелочей. Из них более чувствительным и характеризующим действи — тельную коррозионную активность бензинов является проба на медную пластинку. Содержание так называемой "меркаптановой" серы в товарных бензинах не должно превышать 0,01 %. При ее большем содержании бензины следует подвергать демеркаптанизации (и ,елоч — ная экстракция и каталитическая регенерация раствора меркаптида натрия кислородом воздуха). [c.111]

    Окисление меркаптанов в водно-щелочной среде и испытание активности катализаторов этой реакции проводились при атмосферном давлении техническим кислородом (Ог = 99,5 % об.) в стеклянном аппарате периодического действия с турбинной мешалкой. Опыты по нанесению фталоцианинового катализатора на носитель и по демеркаптанизации дизельного топлива проводились в барботажной стеклянной колонке. Испытание катализаторов гидроочистки проводили на лабораторной и на действующих промышленных установках. [c.29]


    Описание установок для демеркаптанизации керосина [c.31]

    Как было указано выше, каталитическая гидроочистка - наиболее эффективный способ удаления из нефтепродуктов сернистых соединений всех типов. Однако процесс гидроочистки требует высоких капитальных и эксплуатационных затрат, и мощности по гидроочистке на НПЗ не всегда обеспечивают очистку всех вырабатываемых на заводах топлив. В ряде случаев выгодна очистка топлив простыми по технологическому оформлению и дешевыми процессами селективной демеркаптанизации. Нельзя оставить без внимания и тот факт, что зарубежными стандартами предусматривается более высокое (до 0,3-0,4 %), чем у нас (до 0,2 %) содержание в реактивных топливах общей серы и допускается возможность введения в топливо антиокислителей и деактнваторов металлов. Установлено, что дизельные топлива, содержащие 0,2-0,3 % общей серы, при отсутствии в них меркаптанов, сероводорода и свободной серы в десятки раз стабильнее полностью обессеренных топлив [1]. [c.19]

    Лабораторные испытания катализатора на основе угля в процессе демеркаптанизации керосина проводили на установках периодического и непрерывного действия ( рис.2.2 и 2.3). [c.32]

    Опыты по нанесению катализатора на активированные угли, испытанию активности катализаторов и окислительной демеркаптанизации дизельного топлива проводили на установке непрерывного действия (рис.2.4). В качестве реактора используют стеклянную насадочную колонку (1) диаметром 20 мм и высотой 200 мм, снабжённую обратным холодильником и контактным термометром (2). Обогрев реактора осуществляют с помощью нихромовой спирали, регулирование температуры - контактным термометром и электронным реле (5) с точностью 0,5"С. В качестве носителей используют древесный уголь и активированные угли марок КАД-Д, АГ-3, АГ-5, СКТ, АР-3 в качестве катализатора - натриевые соли сульфофталоцианинов кобальта и полифталоцианина кобальта. Активированный уголь загружают в реактор одним слоем высотой 100 мм на пористую перегородку (10). Нанесение фталоцианина кобальта на активированные угли проводят путём циркуляции его 0,5 %-ного водного раствора через носитель при комнатной температуре. Подачу раствора катализатора и очищаемых углеводородов в реактор осуществляют перистальтическим дозировочным насосом (6), скорость подачи кислорода и воздуха в реактор измеряют ротаметром (8) и регулируют игольчатым вентилем. Через определённые промежутки времени в растворе определяют содержание фталоцианина кобальта на приборе ФЭК-56 по оптической плотности. [c.35]

    Исходная бутан-бутиленовая фракция с установки каталитического крекинга, подвергнутая демеркаптанизации, и циркулирующий метанол через емкость Е поступают в верхнюю часть реартора форконтактной очистки. Очищенная смесь после нагрева в теплообменнике до 60 °С поступает в зону синтеза под каж, ый слой катализатора Р— 1(2). В верхнюю часть реакционной зоны во избежание перегрева катализатора подается также подогретый в теплообменнике до 50 — 60 °С свежий метанол. [c.153]

Рис. 2.4. Схема лабораторной установки непрерывного дейстъия для демеркаптанизации дизельного топлива Рис. 2.4. <a href="/info/1582644">Схема лабораторной установки</a> непрерывного дейстъия для <a href="/info/1462317">демеркаптанизации дизельного</a> топлива
    Процесс "Мерокс" применяется преимущественно для де — меркаптанизации сжиженных газов и бензиЕЮВ. Процесс окисли — тел .ной демеркаптанизации сырья осуществляется в следующие три стадии  [c.169]

    Преобладающая часть меркаптанов имеет алифатическую структуру [7]. Меркаптаны — реакционноспособные соединения, склонные к окислению, конденсацпп, взаимодействию с металлами, особенно с медью, кадмием и их сплавами. Для улучшения антикоррозионных и других эксплуатационных свойств некоторые реактивные топлива подвергают демеркаптанизации. [c.14]

    Промышленный процесс окислительной демеркаптанизации топлив был разработан в 1960 году фирмой UOP (Universal Oil Produ tion) под названием Мерокс-демеркаптанизация и к 1991 году число работающих установок достигло 1450. В процессе Мерокс окисление меркаптанов проводится кислородом воздуха в щелочной среде в присутствии металлофталоцианиновых катализаторов. Катализатор окисления может быть нанесен на твердый стационарный носитель (активированный уголь), либо растворен или суспензирован в щелочном растворе [90,91,114-116.  [c.20]

    Описание промышленных установок демеркаптанизации 2.2.1.0писание установок демеркаптанизации бензинов [c.37]


Смотреть страницы где упоминается термин Демеркаптанизация: [c.123]    [c.94]    [c.155]    [c.290]    [c.6]    [c.19]    [c.22]   
Смотреть главы в:

Технология первичной переработки нефти и природного газа Изд.2 -> Демеркаптанизация




ПОИСК







© 2025 chem21.info Реклама на сайте