Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Производство хлора и щелочи электролизом хлоридов

    Технологическая схема производства хлора и гидроксида натрия мембранным методом включает стадии подготовки и очистки рассола, электролиза, доупарки электролитической щелочи и обработки хлора и водорода. Основные отличия мембранного процесса от классических методов получения хлора и гидроксида натрия заключаются в том, что мембранный процесс требует более глубокой очистки питающего рассола от примесей и значительного подкисления анолита. На стадию доупарки поступает раствор щелочи, не содержащий хлоридов. [c.105]


    Гидроксиды щелочных металлов МеОН — кристаллические вещества, растворимые в воде и спиртах. Их водные растворы — едкие щелочи — самые сильные основания. Гидроксиды получают электролизом водных растворов хлоридов . При этом в катодном пространстве выделяется водород и образуется гидроксид щелочного металла. Побочными продуктами производства являются водород и хлор (на аноде). При нейтрализации растворов гидроксидов щелоч- [c.116]

    Состав раствора. Выход щелочи по току зависит от концентрации хлорида натрия в анолите (рис. 2.42). Для питания электролизера с ионообменной мембраной используют рассолы, состав которых такой же, что и состав рассола для производства хлора, щелочи и водорода другими описанными выше методами. Однако степень разложения хлорида натрия составляет 0,7 по сравнению с 0,5 при электролизе с фильтрующей диафрагмой и 0,17 — при электролизе с ртутным катодом. [c.173]

    Производство хлора, щелочи и водорода относится к числу самых крупнотоннажных электрохимических производств. В настоящее время в мире производится свыше 30 млн. т хлора ежегодно. Подавляющее количество хлора получают электрохимическим методом — электролизом водных растворов хлорида натрия. [c.141]

    ПРОИЗВОДСТВО ХЛОРА и ЩЕЛОЧИ ЭЛЕКТРОЛИЗОМ ХЛОРИДОВ [c.347]

    Технологические режимы и расходные нормы в производстве хлора и щелочи электролизом хлоридов приводятся в табл. 10.3—10.5, характеристики электролизеров— в табл. 10.6 и 10.7. [c.352]

    При производстве хлора по методу электролиза с диафрагмой получается техническая щелочь, содержащая в зависимости от обработки ее на стадии выпарки 1,5—2,5% хлоридов, примеси сульфатов,, хлоратов, железа и другие загрязнения. [c.14]

    Очевидно, что ионообменная технология деминерализации воды может стать безотходной лишь при условии экономически целесообразной утилизации всех отработанных растворов и загрязненных промывных вод. Решение этой задачи треб ет, прежде всего, применения таких реагентов для регенерации ионитов, которые в итоге вытеснения из смолы поглощенных ею ионов превращаются в ценные для народного хозяйства продукты. Такими продуктами могут быть нитрат кальция, сульфат аммония, фосфаты, т. е. минеральные удобрения, сульфат натрия, находящий довольно широкое применение в стекольной, целлюлозно-бумажной, химической промышленности, чистый хлорид натрия, пригодный для производства хлора и щелочи, и ряд других солей. Непременным условием при этом, однако, является достаточная чистота продукта и возможность получения его в товарной форме (гранулы для удобрений, сухие соли либо насыщенные растворы, например хлорида натрия, направляемого на электролиз). [c.214]


    Разложение амальгамы ведут на специальных насадках из соединений различных металлов (циркония, вольфрама, графита), которые периодически обновляют и восстанавливают. При электролизе в раствор переходят соединения ртути, которые поступают в дальнейшем со сточными водами в окружающую среду. При производстве хлора и щелочи регенерируется далеко не все количество ртути. Это не только создает экологическую опасность, но и существенно ухудшает экономические показатели производства. При разложении амальгамы и получении раствора едкого натра образуется также некоторое количество хлоридов ртути, которые в дальнейшем попадают со щелочью в различную продукцию, например бумагу. Последняя в конечном итоге в виде отходов потребления поступает в окружающую среду. [c.207]

    Производство хлора и щелочи электролизом водных растворов хлоридов обычно состоит из следующих основных процессов  [c.326]

    Схема цикла сульфата натрия в производстве хлора и щелочи электролизом водных растворов хлорида натрия приведена на [c.228]

    Электрохимические производства по сравнению с химическими обладают тем преимуществом, что в них роль окислителя или восстановителя выполняет электрический ток и таким образом исключается необходимость введения дополнительных реагентов. С этой точки зрения электрохимические процессы могут быть с успехом использованы для создания малоотходных технологических процессов. Примером таких процессов может служить электролиз воды, получение хлора и щелочи диафрагмен-ным нли мембранным методами. Следует отметить, что проблема создания малоотходных производств стала особенно острой лишь в последние годы. Пока работы в этом направлении только развертываются, хотя и имеется возможность снизить отходы в уже действующих производствах за счет применения электрохимических методов. Так, например, в анилинокрасочной промышленности для восстановления ароматических нитросоединений используют насыпные железные стружки в соляной кислоте. В результате реакции образуются отходы хлорида железа, идущего в отвал. Применение электролиза позволит полностью исключить образование этого нежелательного отхода. [c.230]

    Крупным недостатком низкотемпературного способа является тесная связь с производством хлора электролизом с ртутным катодом, в результате которого получается щелочь с малым содержанием хлоридов и водород (для обогрева печи). Впрочем, прин- [c.186]

    Еще Берцелиус и Дэви обнаружили, что при электролизе растворов солей щелочных металлов с ртутным катодом образуются амальгамы [1—3]. При взаимодействии таких амальгам с водой происходит их разложение с образованием гидроокисей щелочных металлов, а также водорода и ртути. Это открытие впоследствии было положено в основу промышленного производства хлора и щелочей электролизом растворов щелочных хлоридов в ваннах с ртутным катодом. [c.5]

    Рассмотрен процесс электролиза воды с целью получения водорода и кислорода при атмосферном и повышенном давлении, производство тяжелой воды электрохимическим методом. Показаны новые технические достижения в производстве хлора и щелочей на примере получения каустической соды методами электролиза водных растворов хлоридов щелочных металлов с фильтрующей диафрагмой, ионообменными мембранами и ртутным катодом. [c.4]

    В настоящее время хлор широко применяется в производстве хлорной извести, соляной кислоты, хлористого алюминия, для синтеза ряда органических соединений и т. д. Хлор получается при электролизе водных растворов хлоридов щелочных металлов или их расплавов. Так, если в первом случае конечным продуктом электролиза является хлор, водород и щелочи, то во втором— легкие металлы и хлор. [c.122]

    Еще в начале XIX века Берцелиус и Дэви. обнаружили, что при электролизе растворов солей щелочных металлов с ртутным катодом получаются амальгамы. При взаимодействии амальгам с водой они разлагаются с образованием гидроксидов щелочных металлов, а также водорода и ртути. Это открытие впоследствии было положено в основу промышленного производства хлора и щелочей электролизом щелочных хлоридов в ваннах с ртутным катодом. Первый патент на электролизер с ртутным катодом для получения хлора и щелочи был взят Нольфом в 1882 г., а первое промышленное предприятие, вырабатывающее эту продукцию в ртутных ваннах Кастнера, было введено в эксплуатацию в 1894 г. в Олдберри (Англия). Четырьмя годами ранее в Грисгейме (Германия) Начала работать первая промышленная установка по производству хлора методом электролиза в ваннах с диафрагмой. [c.5]

    Во многих производствах прикладной электрохимии желательно иметь минимальное напряжение на ячейке и поэтому применять для анода и катода материальг с возможно более низким перенапряжением для процессов, протекающих па электродах. К таким процессам относятся электролиз водных растворов хлоридов с целью получения хлора и каустической соды,. хлоратов, гппохлорита натрия, электролиз водных растворов сульфата натрия для получения серной кислоты и щелочи, электролиз воды для получения водорода и кислорода и некоторые другие. [c.10]


    План производства электролитической щелочи выполнен на 85,А-%, причем план выполнялся на 100 и более с января по май включительно а также в ноябре и декабре. Невыполнение плана объясняется длительной работой на пониаенных нагрузках из-за недостаточного хлорпотребления, нехваткой желбзнодорожных цистерн под жидкий хлор, отсутствием резерва хлорных компрессоров и нестабильной работой выпрямительных агрегатов в летнее время. Нестабильная нагрузка на электролиз привела к ускоренному выходу из строя электролизеров (в ремонте побывало 437 электролизеров) и другого оборудования. Расход сырья и материалов превышает установленные нормы по очищенному рассолу, серной кислоте, графиту. Значительно уменьшился расход электроэнергии по сравнению с 1973 годом (на 92 кВт.ч/т щелочи). Перерасход серной кислоты обусловлен недостаточным охлаждением хлоргаза в теплое время года. Перерасход очищенного рассола объясняется частыми остановками отделения электролиза и получением электрощелоков слабой концентрации. Перерасход графитовых анодов является результатом нестабильной нагрузки. Цех работал с отклонениями от норм технологического режима. Качество рассола было неудовлетворительное концентрация хлорида натрия, прозрачность рассола ниже нормы, превышает норму содержание ионов магния. Повышенная щелочность объясняется большими потерями щелочи с обратной солью и плохой работой узла нейтрализации очищенного рассола. Пониженная концентрация хлора связана с плохим состоянием коммуникации и уплотнений хлорных компрессоров, высокое содержание [c.44]

    На рис. У.17 приведены схемы форм катодов, характеризующие их эволюцию за годы существования способа производства хлора и щелочи электролизом водных растворов хлоридов с твердым катодом [1]. Сложный профиль современных гребенчатых катодов (рис. .17, в) требует наиболее рациональных способов нанесения на их поверхность диафрагм. Нанесение пористой асбестовой диафрагмы на поверхность сетчатого катода сложного профиля производится методом осаждения, заключающимся в просасываиии взвеси асбестового волокна через катод. Указанный метод достаточно хорошо известен и применяется в хлорной промышленности много лет. [c.167]

    В электролизер, разделенный пористой фильтрующей диафрагмой 3, подается 20%-ный раствор хлорида натрия. Метан и кислород или воздух под давлением поступают во внутреннюю полость пористого графитового анода 4, продавливаются сквозь поры на наружную поверхность, где происходит реакция электрохимического хлорирования. На катоде 2 выделяется водород, а в катодном пространстве образуется едкий натр. Температура электролита в процессе электролиза 1 [оддерживается 40 С. Для предотвращения диффузии и электропереноса ионов ОН" из катодного пространства в анодное в процессе электролиза раствор непрерывно фильтруется через пористую асбестовую диафрагму 3, т. е. в электролизере осуществлен принцип противотока раствора и ионов ОН , как в производстве хлора и щелочи. Раствор хлорида натрия и едкого натра из катодного прдстранства направляется на переработку для [c.354]

    XX в. знаменуется бурным развитием электрохимии, которое особенно усиливается в ходе научно-технической революции. В последние годы значительно увеличился объем производства хлора и щелочей (путем электролиза растворов хлорида натрия или калия), водорода (электролизом воды), ряда окислителей и других денных неорганических и органических продуктов (электросинтез). Значительную роль играет электролиз в производстве и рафинировании некоторых металлов. Развиваются электрохимические методы обессоливания водьъ и другие элек-троосмотические и электрофоретические процессы. [c.4]

    Проводились многочисленные исследования процесса электролиза хлоридов щелочных металлов с ионообменными мембранами с целью получения чистой каустической соды без применения ртути [200—204]. Основной трудностью, возникавшей при практической реализации этих предложений, была недостаточная селективность ионообменных мембран, что приводило к загрязнению получаемой щелочи ионом хлора и снижению выхода щелочи по току с повышением ее концентрации. Помимо этого, ионообменные мембраны обладали недостаточной химической и температурной стойкостью в условиях электролиза. Эти трудности обусловили появление скептического отношения к перспективе применения ИОМ в производстве хлора и каустической соды [205], что сильно тормозило разработку промышле1Нной технологии. Тем не менее интерес к этому процессу не пропал и исследования в этой области продолжались. [c.221]

    Промышленный электролиз водных растворов хлористых солей тяжелых металлов известен по литературным данным на примере процесса Генфнера — электролиза растворов пС12 [4]. Основными недостатками этого производства, установленными после нескольких лет практики на заводах в Германии и Англии, были следующие применение низких катодных плотностей тока и малый выход цинка по току, недостаточная стойкость угольных анодов, взятых без переработки в виде выломок из реторт газовых заводов применение диафрагм, усложнявших аппаратуру и быстро разрушавшихся отсутствие спроса на чистый цинк. В настоящее время положение изменилось. Есть хорошие графитированные аноды, опыт нрименения очень высоких плотностей тока [1], большой спрос на чистый циик что же касается диафрагм, то для их изготовления есть много стойких новых материалов однако лучше работать без диафрагм. Для этой цели можно применить принцип отсоса хлора, выделяющегося на аноде, через его тело вместе с электролитом, если графитовый анод сделать высокопористым [5]. Серия предварительных опытов и расчетов [6] 1Ш примере электролиза растворов Zn l2 подтвердила возможность применения электролиза без диафрагмы. Для электролиза растворов хлоридов н елочных металлов, т. е. для обычного электролитического производства хлора и щелочей, также, в известных условиях, оказывается целесообразным применять более пористые графитовые аноды, через тело которых можно питать электролизер рассолом [7] и т. д. [c.698]

    Гидроксиды щелочных металлов МеОН — кристаллические вещества, растворимые в воде и спиртах. Их водные растворы — едкие щелочи — самые сильные основания. Гидроксиды получают электролизом водных растворов хлоридов. При этом в катодном пространстве выделяется водород и образуется гидроксид щелочного металла. Побочными продуктами производства являются водород и хлор (на аноде). При нейтрализации растворов гидроксидов щелочных металлов галогеноводородными кислотами образуются их галогениды, которые являются характеристическими соединениями. Они также получаются непосредственным взаимодействием щелочных металлов с галогенами. Ггшогениды щелочных метгьл-лов характеризуются высокими температурами плавления и кипения, по природе химической связи они — самые ионные соединения. [c.308]

    В последнее время предлагаются различные варианты комбинирования производств хлората и хлора. Например, описан процесс получения хяора и хлората в двух электролизерах, один из которых. снабжен катионообменной мембраной (пат. США 3897320). Анолит содержит 250—300 г/л Na l. Процесс проводится с применением ОРТА. На аноде образуется хлор, а на. катоде — водород. Из анодного пространства отводится раствор хлорида, содержащий хлорат, из катодного пространства— раствор щелочи. Анолит из первого электролизера поступает во второй — хлоратный, не имеющий диафрагмы в нем поддерживается температура 90° С. Для электролиза используют ПИА и стальные катоды. Выход по току хлората составляет 94% при концентрации Na lOa 430 г/л. После электролиза из раствора хлората выделяют хлорид, который идет на приготовление исходного раствора, подаваемого в анодное пространство первого электролизера. [c.93]

    В процессе электролиза водных растворов хлорида натрия в одном аппарате получают три целевых продукта щелочь, хлор и водород. В настоящее время есть предложения [5] по раздельному учету затрат на получение этих продуктов. Однако на производстве используют устоявшийся способ расчета в качестве основного продукта принимают щелочь, а вырабатываемые хлор и водород учитываются как побочные, и их стоимость из затрат на производство щелочи вычитается. Калькуляция себестоимости электролитической щелочи цеха электролиза, оборудованного электролизерами с графитовыми и ОРТА анодами в пересчете на 100% NaOH, приводится в табл. 12 [13]. Как показывает анализ себестоимости, часть составляющих затрат вносит незначительный вклад в ее величину, например, азот, природный газ, асбест, бязь и т. п. Другая часть затрат не меняется при изменении управляющих воздействий в отделении электролиза, например, расходы соли, кислоты и т. д. Поэтому рекомендуется [5, 116] в качестве обобщенного показателя производственных процессов применять не себестоимость продуктов в целом, а меняющуюся ее часть — технологическую составляющую себестоимости. При этом в каждом конкретном случае необходимо проводить тщательный анализ себестоимости с целью правильной оценки ее технологической составляющей. Статьи затрат, которые входят в технологическую составляющую, должны прямо или косвенно выражаться через варьируемые параметры. Поэтому В1месте с действием обобщенного критерия для всего технологического отделения, для отдельных управлений возможно применение частных критериев, которые являются конкретизацией общего показателя на отдельные управления или процессы. Например, при определении оптимального значения уровня анолита электролизера технологическая составляю- [c.94]


Смотреть страницы где упоминается термин Производство хлора и щелочи электролизом хлоридов: [c.8]    [c.3]    [c.3]    [c.3]    [c.44]   
Смотреть главы в:

Справочник по электрохимии -> Производство хлора и щелочи электролизом хлоридов




ПОИСК





Смотрите так же термины и статьи:

Хлор и щелочи, производство

Хлорид производство

Цех электролиза в производстве хлора

Щелочи

хлоридом хлора



© 2025 chem21.info Реклама на сайте