Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Характер излучения пламени

    Б качестве довода в пользу существования равновесия в горячих пламенах, далее, можно привлечь результаты измерения интенсивности излучения и температуры этих пламен. Если интенсивность излучения разреженных пламен на много порядков превышает интенсивность равновесного излучения при температуре пламени и представляет собой практически чистую хемилюминесценцию, то интенсивность горячих пламен обычно мало отличается от интенсивности равновесного излучения, а в случае бесцветных пламен, т. е. пламен, не содержащих твердых частичек, значительно уступает равновесной интенсивности. Равновесный характер излучения некоторых горячих пламен следует из распределения интенсивности в спектре этих пламен, в частности из близкого совпадения вращательной температуры, т. е. температуры, вычисляемой из распределения интенсивности в полосах электронного спектра испускания пламени, с его истинной температурой. Таковы, например, пламена водорода и окиси углерода, а также кислородные пламена метилового спирта, формальдегида и муравьиной кислоты, в которых вращательная температура гидроксила оказывается близкой к температуре пламени. Температура, измеренная при помощи того или иного метода (например, метода обращения спектральных линий, основанного на допущении о равновесных концентрациях возбужденных атомов в зоне пламени), часто оказывается близкой к максимальной температуре, отвечающей химическому равновесию в пламени [658], как это видно, в частности, из данных табл. 57. [c.577]


    На характер излучения фона влияет присутствие воды, органических растворителей, посторонних элементов. Значительные количества элементов основы часто увеличивают фон и шум пламени, что ухудшает пределы обнаружения примесей [652]. Вообще, как известно, пламя является стабильным источником света и в наиболее благоприятных случаях коэффициент вариации излучения фона пламени характеризуется величиной 1—0,5%- При введении в пламя микроколичеств пробы на микрозондах воспроизводимость анализа хуже ( 3%) [667]. Случайная ошибка анализа может быть снижена в 2—3 раза с помощью соответствующего внутреннего стандарта (см., например, [1086]). Однако вблизи предела обнаружения, когда общая случайная ошибка лимитируется инструментальной и регистрационной ошибками, применение внутреннего стандарта обычно не приводит к улучшению воспроизводимости количественных определений. [c.210]

    При анализе суспензий изучалась зависимость интенсивности излучения натрия от концентрации кремния [263]. Кремний увеличивает эмиссию натрия, однако характер влияния не установлен. Если вводить в пламя суспензию в растворе хлорида кальция, интенсивность спектральных линий щелочных элементов возрастает в 1,7— [c.115]

    Атомно-абсорбционная спектрофотометрия — относительно новый метод химического анализа. Первые работы по его применению опубликованы в 1955 г. [856, 1633]. Вследствие высокой чувствительности и селективности, простоты выполнения и малой продолжительности анализа этот метод в настоящее время широко применяется для определения многих элементов, в том числе ЗЬ [265, 659, 709, 863, 1011, 1024, 1303, 1315, 1538, 1558, 1632]. Метод основан на способности свободных атомов каждого элемента поглощать излучение только определенной резонансной частоты. Вводя анализируемый раствор в пламя горелки или используя другой атомизатор, переводят большую часть элементов, находящихся в растворе в виде химических соединений, в свободные атомы. Условия атомизации подбирают так, чтобы определяемый элемент возможно большей частью переходил в свободные невозбужденные атомы. Кроме растворов, в последнее время в атомно-абсорбционной спектрофотометрии успешно применяется вариант с использованием твердых образцов. Благодаря импульсному характеру испарения и отсутствия разбавления анализируемого материала, чувствительность определения элементов в этом варианте существенно повышается. Поглощение резонансного излучения атомным [c.88]


    При пламенном анализе нефтепродуктов проблема фона приобретает особо важное значение. Это объясняется тем, что анализируемый образец (сама проба и растворитель) оказывает существенное влияние на состав и характер пламени, изменяя отношение С/О. Заметная часть пробы с тяжелой основой служит источником образования сажистых частиц, рассеивающих свет. Отрицательное последствие от этого процесса усугубляется значительным различием нефтепродуктов по вязкости, в результате чего также изменяются состав пламени и отношение С/О. Интенсивность рассеивания падающего излучения достаточно мелкими частицами (размером примерно на порядок меньше длины волн падающего излучения) в соответствии с законом Рэлея обратно пропорциональна четвертой степени длины волны измеряемой линии. Поэтому с уменьшением длины волны аналитической линии отрицательное влияние рассеяния излучения резко возрастает. При этом особенно ухудшаются аналитические характеристики при использовании резонансных линий с длиной волны около 200 нм (РЬ 217,0 нм Sb 206,8 нм As 197,2 нм As 193,7 нм Se 196,1 нм). При введении в воздушно-ацетиленовое пламя водного раствора, содержащего мелкодисперсные твердые частицы, кажущаяся абсорбция на длине волны резонансной линии никеля 232,0 нм состав- [c.129]

    Характерным свойством щелочных металлов является легкость, с которой возбуждается световое излучение их атомов. Если не слишком труднолетучие соединения щелочных металлов внести в пламя бунзеновской горелки, то оно окрашивается. При спектроскопическом исследовании в видимой области появляется несколько характерных линий. Как будет показано в разделе Спектры щелочных металлов , легкость, с которой возбуждается световое излучение, и простота строения спектров находятся в тесной связи с сильно электроположительным характером щелочных металлов. [c.182]

    При изучении обычного бунзеновского пламени сразу можно заметить, что внешний вид пламени и, следовательно, его спектр изменяются в зависимости от скорости подачи воздуха, которая в случае применения горелки Бунзена определяется воздушным зазором в ее нижней части. Если закрыть подачу воздуха, то получается яркое светящееся пламя. Спектр его имеет в основном сплошной характер, который обусловлен тепловым излучением угольных частиц. При небольшой подаче воздуха яркое желтое пламя заменяется на значительно менее яркое прозрачное сине-фиолетовое пламя, называемое обычно несветящим-ся. При дальнейшем увеличении подачи воздуха пламя разделяется на два конуса внутренний — яркий сине-зеленый и внешний — гораздо менее интенсивный, синефиолетового цвета. При еще большей подаче воздуха для внутреннего конуса опять начинает преобладать фиолетовый оттенок пламя такого типа обычно не может быть осуществлено в обыкновенной бунзеновско горелке, для этого необходим некоторый напор в струе воздуха. [c.60]

    Оптические спектры. Как известно, некоторые элементы окрашивают пламя бунзеновской горелки в определенные цвета. Характер окрашивания пламени связан с положением элемента в определенной группе периодической системы. Еще яснее эта зависимость выражается в спектрах излучения в видимой области при исследовании пламени с помощью спектроскопа. Оказывается, что спектры элементов, находящихся в одной подгруппе периодической системы, обнаруживают в своем тонком строении чрезвычайно большое сходство. В дальнейшем будет видно, что это явление основано на периодичности атомного строения и объясняется теми же причинами, от которых зависит также и периодический характер химических свойств. [c.35]

    Второй вид спектров — испускания — возникает, когда энергия частиц переходит в энергию излучения. Характер таких спектров позволяет судить о веществе в газообразном состоянии. Спектры излучения возникают при действии высоких температур, когда вещество попадает в пламя или искровой (дуговой) заряд. Наблюдается ряд сложных процессов плавление, испарение, возгонка, взаимодействие с кислородом. Если температура достаточно высокая, то происходит диссоциация, ионизация, наблюдается разноцветное свечение. Возбуждение атомов, молекул и ионов [c.137]

    Все эти рассуждения относятся к чистым газам. Но если в газе взвешены частички твердого тела, то характер излучения и его интенсивность сушествеино изменяются. В результате излучения этого твердого тела спектр становится непрерывным, а это означает, что излучение теряет селективный характер. Важным фактором является размер частичек твердого тела. Если эти частички получились в результате распада углеводородов (светящееся пламя), то их размеры составляют доли микрона. В случае образования частичек в результате сжигания угольной пыли размер их поперечника составляет несколько десятков микронов. В связи с большой разницей в размерах частиц излучение светящегося пламени имеет иной характер, чем излучение пламени угольной пыли. [c.375]


    При этих условиях углеводороды, нагревающиеся за счет излучения рабочего простраиства печи, частично разлагаются с выделением сажистого углерода, который постепенно сгорает в объеме печи, повышая светимость пламени. В то же время горючие газы (СО, Н2) при быстром смешении сго рают вблизи горелки, обеспечивая высокую температуру горения. Замедленный характер выгорания сажистого углерода и более крупных углеродистых частиц объясняется, в частности, тем, что факел, обладая известным запасом кинетической энергии, подса-сывает о к-ружающие продукты горения, которые, обедняя смесь в отношении содерл<ания кислорода, делают ее менее окислительной. Чем меньше коэффициент расхода воздуха, при котором горелка обеспечивает полноту горения газообразных составляющих пламени, тем большую светимость будет иметь пламя, тем эффективнее будет работать печь. [c.287]

    Двухстадийным воспламенением называется такое воспламененне, когда перед горячим пламенем возникает холодное пламя. Область существования холодного пламени, как показано на рис. 5.15, ограничена некоторым интервалом температур и давлений. В случае, который представлен на рис. 5.15, при давлении 10 кгс/см химическая реакция начинается при повышении температуры до 370 °С, вблизи 420 °С появляется холодное пламя и происходит первое воспламенение, вблизи 480°С появляется горячее пламя и происходит второе воспламенение. При появлении холодного пламени освобождается лишь небольшая часть энергии и распространение пламени сопровождается небольшим разогревом и слабым свечением. Основная часть энергии выделяется, когда возникает горячее пламя. Спектр излучения слабо светящегося холодного пламени определяется молекулами формальдегида НСНО. Напротив, спектр излучения ярко-светящегося горячего пламени состоит главным образом из полос Сг и СН. Такой характер свечения холодного пламени свидетельствует о том, что в пламени образуются пероксиды и формальдегид. Как следует из рис. 5.16 и эмпирических формул, предложенных Регенером [20], при двухстадийном воспламенении влияние температуры Т и давления Р на задержку воспламенения Т , соответствующую появлению холодного пламени, и задерл<ку воспламенения [c.98]

    Одним ИЗ наиболее важных применений фотометрии пламени яв- ляется одновременное определение натрия и калия (а иногда и литмя) в биологических жидкостях, пищевых продуктах, удобрениях и т. д. Эти элементы возбуждаются значительно легче остальных, и их характери- стические линии эмиссионного излучения хорошо отделены друг от друга. Имеется несколько упрощенных приборов, предназначенных для выполнения этого анализа они используют газо-воздушное пламя и фотоэлементы с запирающим слоем. Некоторые приборы имеют указатели, шкалы которых непосредственно прокалиброваны в количеспзах определяемых элементов. [c.106]

    Изучая характер влияния со стороны посторонних элементов, авторы установили, что при использовании воздушно-ацетиленового пламени при введении в раствор 10 000 мкг/мл натрия и калия наблюдается положительное отклонение гальванометра в 2—3% его полной шкалы, но при использовании пламени воздух—светильный газ это отклонение в два раза меньше. Обнаруженное влияние, согласно объяснению авторов, носит чисто оптический характер (сплошное излучение натрия и калия в области 330 ммк) и может быть полностью устранено либо увеличением интенсивности света, излучаемого лампой с полым катодом, либо путем модуляции светового потока. Для определения малых концентраций меди предложено извлекать ее в метилизобутилкетон в виде комплекса с пирролидиндитиокарба-минатом аммония и определять медь по линии Си 325 ммк, распыляя в пламя органическую фазу. [c.144]

    Для данной зоны пламени было найдено, что для темпе-]затур, вычисленных по уравнению Планка из различных опре-де.тений спектральной яркости для различных длин волн, наблюдалось согласие между самими температурами, а также между ними и температурой пламени. Это устанавливает тепловой характер инфракрасного излучения для газовой смеси, примененной Шмидтом, и поскольку измерения производились на небольшом расстоянии над конусами, то очевидно, что любое хеми-люминесцентное излучение от газа, выходящего из пламени, при этом быстро затухает. Поскольку светильный газ содержит окись углерода, водород и углеводороды, то вышеприведенное заключение можно распространить и на пламена каждого из этих горючих газов. [c.357]


Смотреть страницы где упоминается термин Характер излучения пламени: [c.223]    [c.350]    [c.116]   
Смотреть главы в:

Основы пиротехники -> Характер излучения пламени




ПОИСК







© 2025 chem21.info Реклама на сайте