Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Пламенный атомно-абсорбционный анализ

    Метод пламенной фотометрии применяется (для открытия и определения химических элементов) в двух вариантах эмиссионная пламенная фотометрия (пламенно-эмиссионный анализ) и абсорбционная пламенная фотометрия (пламенно-абсорбционный, атомно-абсорбционный анализ). Чувствительность метода довольно высока — до 0,001 мкг в 1 мл анализируемого раствора. [c.520]


    Предлагаемое практическое руководство обобщает опыт преподавания физических и физико-химических методов анализа, накопленный на кафедре аналитической химии Московского государственного университета. Руководство включает два больших раздела— спектроскопические и электрохимические методы. В спектроскопические методы включены методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентный в электрохимические — потенциометрический (в том числе с использованием ионоселективных электродов), кулонометрический, полярографический и амперометрический методы. Наряду с перечисленными методами в современных аналитических ла- бораториях используют и другие методы атомно-флуоресцентный анализ, рентгеновские методы, искровую и лазерную масс-спектрометрию, радиоспектроскопические, ядерно-физические и радиохимические методы, однако ограниченное число учебных часов не позволяет включить их в данное руководство. Изучение этих курсов предусмотрено [c.3]

    Пламя используют в качестве источника света в так называемом методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 3.2). В зависимости от состава горючей смеси температура пламени может поддерживаться в интервале 2000—3000 К, что обеспечивает достаточно низкий предел обнаружения элементов, энергии возбуждения резонансных линий которых не превышают 5 эВ и соединения которых атомизируются в пламени в достаточной мере. Особое значение метод фотометрии пламени имеет для определения микроколичеств соединений щелочных и щелочноземельных металлов, для которых предел обнаружения этим методом находится в диапазоне 0,001 — 1 нг/мл. Предел обнаружения порядка 0,1—1 нг/мл достигается также для таких элементов, как европий, иттербий, свинец, медь, серебро, индий, таллий, хром, марганец, алюминий и галлий, причем в некоторых случаях в качестве аналитического сигнала используют молекулярную эмиссию пламени. Освоение высокотемпературных пламен (водородно-кислородного, ацетилен-кислородного) позволило значительно увеличить число определяемых элементов. [c.58]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушно-ацетиленовое и пламя оксида азота (I) с ацетиленом. Первый тип пламени успешно применяют для определения щелочных и щелочноземельных элементов, а также таких металлов, как хром, железо, кобальт, никель, магний, молибден, стронций, благородные металлы и др. Для некоторых металлов (хром, молибден, олово и др.) чувствительность определений может быть увеличена применением обогащенной смеси. К элементам, для определения которых практически бесполезно использовать воздушно-ацетиленовое пламя, относятся металлы с энергией связи металл — кислород выше 5 эВ (алюминий, тантал, титан, цирконий и др.). Пламя ацетилена с воздухом обладает высокой прозрачностью в области длин волн более 200 нм, слабой собственной эмиссией (особенно обедненное пламя) и обеспечивает высокую эффективность атомизации более чем 30-ти элементов. Частично ионизируются 0 нем только щелочные металлы (цезий 65%, рубидий 41 %, калий 30%, натрий 4 %, литий 1 %). [c.146]


    ЧУВСТВИТЕЛЬНОСТЬ ОБНАРУЖЕНИЯ ЭЛЕМЕНТОВ МЕТОДОМ АТОМНО-АБСОРБЦИОННОГО АНАЛИЗА В ПЛАМЕНИ [c.733]

    Способы получения аэрозолей. В настоящее время разработаны десятки конструкций распылительных устройств, основными из которых являются пневматические и ультразвуковые диспергаторы, обеспечивающие преобразование жидкости в облако мелких аэрозольных частиц размером в несколько микрометров. Все эти устройства работают в неразрывном комплексе с соответствующей горелкой. Система распылитель—горелка является центральной частью установки для пламенного атомно-абсорбционного анализа. От качества работы этого узла зависит качество аналитических измерений. [c.832]

    ПААА —пламенный атомно-абсорбционный анализ [c.8]

    Пламя было первым источником света для эмиссионного спектрального анализа. Окрашивание пламени при введении пробы в течение ста лет служит для открытия ряда металлов. Но в целом пламя применяли мало, используя, главным образом, электрические источники света. Сравнительно недавно была разработана новая техника работы, которая позволила выявить ряд ценных характеристик пламени как источника света. В настоящее время методы спектрального анализа с использованием пламени широко распространены. Они получили специальное название — пламенная фотометрия. В атомно-абсорбционном анализе пламя используется для испарения вещества и диссоциации его молекул на атомы. [c.80]

    Таким образом, имеем два противоположных мнения. В работах [204, 205, 300] показано, что при прямом пламенном атомно-абсорбционном анализе работавших масел получают сильно заниженное (до 10 раз и более) содержание продуктов износа по сравнению с результатами, полученными другими методами анализа. А в работе [302] пламенным атомно-абсорбционным методом получено содержание продуктов износа всего на 10% меньше, чем при озолении проб масел и анализе растворов золы в хлороводородной кислоте. Из этого следует вывод [c.208]

    МПа. После ультрафиолетового детектора выходная трубка из нержавеющей стали с внутренним диаметром 0,1 мм соединяется тефлоновой трубкой длиной 10 мм, внутренним диаметром 2 мм с всасывающим капилляром распылителя СФМ Перкин-Элмер , модель 360. Конструкция горелки не изменена, лишь удалено устройство, предназначенное для задержания крупных капель аэрозоля. Без этого устройства до 80% всасываемых бензиновых фракций поступает в пламя. Скорость всасывания раствора не зависит от работы распылителя, на нее влияет лишь запрограммированное давление, необходимое для хроматографического разделения. Нулевое положение СФМ устанавливают при пропускании через хроматограф чистой смеси растворителей. Метод позволяет четко разделять и количественно определять 0,25—50 мкг свинца в форме ТЭС и ТМС. Как показано в гл. 6, при пламенном атомно-абсорбционном анализе интенсивность сигнала от одинакового количества свинца в растворе в форме ТЭС и ТМС различается в 2—3 раза. Поэтому при использовании описанного метода для количественного определения свинца в различных формах соединений нужно соответствующее эталонирование. [c.266]

    АБСОЛЮТНАЯ ЧУВСТВИТЕЛЬНОСТЬ МЕТОДА АТОМНО-АБСОРБЦИОННОГО АНАЛИЗА В ПЛАМЕНИ ПРИ ПРИМЕНЕНИИ ГРАФИТОВОЙ КЮВЕТЫ [c.733]

    Атомно-абсорбционный анализ (ААА) является одним из наиболее распространенных методов аналитической химии. Предварительная подготовка анализируемой пробы аналогична этой операции в пламенной фотометрии перевод пробы в раствор, распыление и подача аэрозолей в пламя. Растворитель испаряется, соли разлагаются, а металлы переходят [c.647]

    Атомно-абсорбционный анализ. В течение последних десяти лет получил большое распространение новый вид атомного анализа по спектрам поглощения. Получить резонансное поглощение отдельных атомов можно только в парах. Поэтому анализируемую пробу вводят в высокотемпературное пламя, где она испаряется и диссоциирует на отдельные атомы, так же как и в методе пламенной фотометрии. Для более полной диссоциации молекул обычно используют восстановительное пламя, в котором образование устойчивых двухатомных молекул происходит реже. Концентрацию анализируемых элементов в пламени определяют не по излучению возбужденных атомов, а по поглощению света от дополнительного источника невозбужденными атомами. В качестве источника света используют отпаянные трубки с полым катодом (или высокочастотным разрядом), в которые тем или иным способом вводится один или несколько определяемых элементов. Такие трубки в течение длительного времени стабильно излучают узкие резонансные линии введенных элементов. Проходя через пламя, это излучение частично поглощается невозбужденными атомами анализируемой пробы, введенной в пламя. С ростом концентрации анализируемого элемента увеличивается упругость его паров [c.274]


    Для различных горючих газовых смесей должны использоваться специально сконструированные горелки. При подаче смеси газов фронт пламени поддерживается над соплом горелки за счет быстрого протока газа через сопло. Фактически скорость протока газа обычно в 2—3 раза превышает скорость распространения пламени. Наиболее распространены в практике атомно-абсорбционного анализа щелевые горелки, позволяющие получать тонкие плоские пламена с большой длиной поглощающего слоя (рис. 3.38). Горелка состоит из двух идентичных заготовок из подходящего сплава. При совмещении этих заготовок в верхней части образуется прямоугольная щель длиной до 12 см, шириной менее 1 мм и высотой около 1 см, обеспечивающая ламинарный поток газа. Обе части горелки стягиваются винтами. Горелку можно поворачивать относительно оси, меняя тем самым длину поглощающего слоя. [c.150]

    Методика атомно-абсорбционного анализа с использовапием ЭТА имеет ряд специфических особенностей. Подготовка же проб (перевод в раствор, при необходимости — дополнительное концентрирование) и обработка результат(>в анализа не отличаются от используемых при работе с пламенным вариантом атомизации. [c.168]

    При атомно-абсорбционном анализе температура пламени оказывается достаточной для диссоциации практически всех соединений, а возбуждение атомов не требуется, поэтому число определяемых элементов несравненно больше, чем в методе пламенной фотометрии. Современные приборы уже в настоящее время позволяют определять содержание почти 70 элементов. [c.275]

    В атомно-абсорбционном анализе для повышения чувствительности определения увеличивают длину поглощающего слоя. Это достигается путем применения специальных щелевых горелок, трубок-адаптеров, в которые направляется поток отходящих газов пламени или зеркальных систем для многократного прохождения луча через пламя. [c.701]

    Какие горючие смеси используют для получения пламени в атомно-абсорбционном анализе  [c.206]

    Применение метода атомно-абсорбционной спектрометрии с пламенной атомизацией. Определению натрия в различных объектах методом атомно-абсорбционного анализа посвящено много работ [30, 77, 78, 171, 420, 663, 847, 872, 910, 914, 935, 940, 991, 1193, 1223, 1246). Заслуживают внимания монографии [67, 407]. [c.126]

    Для уменьшения расхода раствора предложено применять комбинированную горелку-распылитель со скоростью подачи раствора 25 мл/с [910]. Атомизатор — пламя водород—кислород, предел обнаружения натрия 0,008 мкг/мл. В работе [77] толщину поглощающего слоя увеличили втягиванием пламени пропан—бутан—воздух при помощи насоса в абсорбционную кювету. Обсуждено влияние различных факторов на градуировочные графики при определении натрия методом атомно-абсорбционного анализа [935, 991]. [c.127]

    Руководство включает два больших раздела оптические методы и электрохимические методы. В первом разделе рассматриваются методы эмиссионной фотометрии пламени, атомно-абсорбционной спектроскопии пламени, абсорбционной молекулярной спектроскопии и люминесцентные методы. Второй раздел включает потенциометрический, кулонометрическнй, полярографический и амперометрический методы анализа. Единство подхода к теоретическим вопросам внутри каждого из разделов позволяет четко увидеть возможности, ограничения и недостатки каждого метода. По каждому методу даны практические работы, отражающие определенные возможности метода либо в исследовательском, либо в прикладном аспекте описана аппаратура. [c.2]

    Для проведения атомно-абсорбционного анализа, исследуемое вещество испаряют, подавая его в зону низкотемпературного пламени. Молекулы испарившегося вещества диссоциируют на атомы. Поток света, в спектре которого имеется линия света, поглощаемая веществом, пройдя че- [c.249]

    На рис, 46 представлена принципиальная схема установки для атомно-абсорбционного анализа. Свет от разрядной трубки 1 (полый катод, покрытый внутри определяемым металлом) проходит через пламя горелки 2 и фиксируется на ш,ели монохроматора 3. Затем излучение попадает на фотоумножитель или фотоэлемент 4. Ток усиливается в блоке 5 и регистрируется измерительным устройством 6. Определение заключается в измерении отношения световых потоков прошедшего через пламя с введенным в него анализируемым веществом и без него. Поскольку свечение линии исследуемого элемента в пламени горелки оказывается более интенсивным, чем их интенсивность, полученная от полого катода, то излучение последнего модулируют. Модуляция излучения осуществляется вращающимся диском с отверстиями (модулятор 7), расположенным между полым катодом и пламенем. Усилитель 5 должен иметь максимальный коэффициент усиления для той же частоты, с ка-> кой модулируется излучение полого катода. [c.250]

    Пламя используют как атомизатор и источник возбуждения спектров в методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 14.3). Схема основных процессов, протекающих в пламени, показана на рис. 14.4. Наиболее часто используются пламена смеси воздух—ацетилен (Т = 2100-2400 К) и оксид азота(1)—ацетилен (Т = 3000-3200 К), реже — пламена смесей воздух—пропан (Т = 2000-2200 К) и оксид азота(1)—пропан (Т = 3000 К). [c.363]

    Типы пламен и их структура. Пламя — исторически первый и до сих пор наиболее распространенный тип атомизатора в атомно-абсорбционном анализе. Для получения пламен применяют различные комбинации горючих газов с окислителями, характеризующиеся различной температурой и скоростью горения (табл. 14.39). [c.831]

    В целом атомно-абсорбционный анализ регистрирует поглощение узкой линии излучения атомами, находящимися в невозбужденном состоянии и обладающими узким пиком поглощения. Поэтому наряду с высокой селективностью этот метод практически свободен от эффектов спектрального наложения, столь характерных для эмиссионной спектроскопии. Мало чувствителен метод и к изменениям температуры пламени. [c.368]

    Открытые электротермические атомизаторы представляют собой электрически нагреваемые испарители, над которыми пропускают пучок света (см. рис. 14.59). Аналитической зоной служит просвечиваемая область над испарителем. Можно вьщелить две группы таких атомизаторов без дополнительного нагрева пробы и комбинированные — с дополнительным нагревом паров за счет пламени. В первом варианте (рис. 14.59, а-г) испарителем служат тигель из графита, графитовый стержень, проволочная спираль из тугоплавкого металла, танталовая лента, лодочка, графитовый жгут. Во втором варианте (рис. 14.59, и, е) электрически нагреваемый испаритель помещают в пламя щелевой или перфорированной горелки. Испарителем служат графитовый стержень или удлиненная лодочка, располагаемые вдоль пучка света, либо капсула из пористого графита. Для защиты открытых атомизаторов от воздействия атмосферного воздуха применяют штативы с вертикальным потоком защитного газа или газов пламени. Для атомизаторов типа печь—пламя используют смеси природного газа, ацетилена или водорода с воздухом, ацетилена с оксидом азота (1) или другие типы пламен, используемых в пламенном атомно-абсорбционном анализе. [c.842]

    Плазма тлеющего разряда внутри катода имеет температуру около 800 К- Благодаря относительно малому давлению и низкой температуре лоренцевское и доплеровское уширение линий испускания в лампе с полым катодом существенно меньше (на 2 порядка), чем в применяемых атомизаторах, например в пламени. Поэтому лампы с полым катодом удовлетворяют требованиям, предъявляемым к источникам в атомно-абсорбционном анализе, т. е. линии в спектре испускания являются очень узкими. Эффективность работы лампы с полым катодом зависит от ее конструкции и напряжения, которое подводится к электродам. Высокие напряжения и соответственно высокие значения тока приводят к увеличению интенсивности свечения. Однако это преимущество часто приводит к увеличению эффекта Доплера для линии испускания атома металла. Более того, кинетическая энергия иона инертного газа, бомбардирующего внутренние стенки полого катода, зависит от массы иона, напряжения на электродах лампы и числа соударений в единицу времени, которые происходят по мере движения иона инертного газа к катоду. Чем выше значение тока, тем больше относительное число невозбужденных атомов в облаке, вырванном в результате бомбардировки стенок полого катода ионами инертного газа. Невозбужденные атомы материала катода способны поглощать излучение, испускаемое возбужденными атомами. В результате наблюдается самоноглощение, которое уменьшает интенсивность в центре линии испускания лампы. [c.144]

    Еще один способ подготовки нефтепродукта к пламенному анализу заключается в переводе пробы в водную эмульсию. Для определения цинка в смазочных маслах к 0,1 г пробы добавляют 2 мл 10%-ного раствора в бензоле эмульгатора М8-12 или 4%-ного водного раствора ноиилфенолпол и-этилеигликолевого эфира, энергично встряхивают 15 с и разбавляют водой до 100 мл. Аналогично готовят эталонные эмульсии, цинк вводят в форме оксида. Далее проводят обычный пламенный атомно-абсорбционный анализ на СФМ Пай-Ю.никам , модель 5Р-1900. Градуировочные графики строят для концентрации цинка выше 0,3 мкг/г. Относительное стандартное отклонение при концентрации цинка 1 и 3 мкг/г составляет 1,9 и 1%) [183]. [c.91]

    Эталоны в виде суспензий применяют также при пламенном атомно-абсорбционном анализе каменных углей [206]. С целью устранения влияния состава лри анализе антрацита и нефтяного кокса эталоны готовят подбором нескольких проб с различным содержанием примесей [207]. Выбрано пять проб антрацита и пять нефтекокса с зольностью от 1,94 до 6% и от 0,19 до 1,15% [c.103]

    В работе [312] кратко описаны четыре метода пламенного атомно-абсорбционного анализа полимерных материалов. По первому методу 0,5 г полимера растворяют в 25 мл растворителя и раствор анализируют. Полистиролы и ацетатные целлюлозы растворяют в МИБК, полиакрилонитрилы — в диметил-формамиде, поликарбонаты и поливинилхлориды — в диметил-ацетамиде, сополимер поливинилхлорида с поливинилацета-том — в циклогексаноне, полиамид — в 60%-ной муравьиной кислоте, полиэфиры —в метаноле. Второй метод рассчитан на анализ нерастворимых полимеров. Шерсть разлагают и переводят в раствор 30-минутным кипячением 0,5 г образца в 15 мл 5%-ного гидроксида натрия. Хлопок и целлюлозное волокно (0,5 г) обрабатывают 30 мин 72%-ной серной кислотой, разбавляют водой до объема 25 мл и анализируют, используя кислотостойкую систему распылитель — горелка. В третьем методе предусматриваются тепловая обработка образца полимера с [c.217]

    ФОТОМЕТРИЯ ПЛАМЕНИ (пламенная фотометрия), оптический метод количеств, элементного анализа по атомным спектрам поглощения (абсорбционная Ф. п.) или испускания (эмиссионная Ф. п.). Для получ. спектров анализируемое в-во переводят в атомный пар а пламени. Об абсорбционной Ф. п. см. Атомно-абсорбционный анализ. Эмиссионную Ф. п. делят на флуоресцентную (см. Атомнофлуоресцентный анализ) и термическую последний метод является разновидностью эмиссионного спектрального анализа и широко используется этому виду Ф. п. и посвящена данная статья. [c.631]

    Значительное развитие получил пламенный вариант атомноэмиссионного и атомно-абсорбционного анализа, применимый для определения натрия практически в любых природных и промышленных объектах. К ставшим традиционными электротермическим и пламенным способам атомизации добавились лазерные источники возбуждения. Разработанные методы сочетают очень высокую чувствительность (до 10 г натрия) с высокой селективностью, особенно при ступенчатой лазерной ионизации атомов. [c.5]

    Проведено сравнение условий определения щелочных элементов, в том числе натрия, методами пламенной атомно-эмиссионной и атом-но-абсорбционной спектрометрии [410]. Использована установка на основе монохроматора УМ-2, источниками света в атомно-абсорбционном анализе служили высокочастотные лампы (безэлектродные шариковые). Изучено влияние различных условий проведения анализа, а также влияние кислот (соляной, серной), органических растворителей (метанол, этанол) разных концентраций. Из результатов эксперимента сделан вывод, что по чувствительности и уровню помех атом-но-абсорбционный метод определения натрия не имеет преимуществ перед атомно-эмиссионньш. При оценке современного состояния атомно-абсорбционного анализа и его роли в современном анализе самых разнообразных объектов отмечается несомненное преимущество атомно-эмиссионного метода определения натрия (калия и лития) перед атомно-абсорбционным [67]. [c.113]

    Для определения 1 10 % кальция в цирконии и его сплавах рекомендуются методы фотометрии пламени и атомно-абсорбционный. Цирконий отделяют, пропуская раствор после растворения пробы во фтористоводородной кислоте через колонку с катионообменной смолой. Ионы кальция, остающиеся на смоле, элюируются разбавленной соляной кислотой и определяются либо методом фотометрии пламени , либо методом атомно-абсорбционного анализа . В последнем методе нет необходимости учитывать поправку на фон. [c.128]

    В практике атомно-абсорбционного анализа наибольшее применение получили два пламени воздушноацетиленовое и пламя оксида азота(1) с ацетиленом. [c.832]

    Пламя ацетилена и оксида азота([) имеет почти на 900 К более высокую температуру. В то же время скорость распространения фронта пламени фавнительно невелика. В результате в нем создаются условия для эффективной атомизации значительно более широкого круга элементов и их соединений. Пламя отличается высокой прозрачностью во всем интервале длин во ш, используе-мьк в атомно-абсорбционном анализе (190-850 нм). Основные недостатки пламени — сильное собственное све- [c.832]

    ФОТОКОЛОРИМЕТРИЯ, см. Фотометрический анализ. ФОТОЛЮМИНЕСЦЕНЦИЯ, см. Люминесценция. ФОТОМЕТРИЧЕСКИЙ АНАЛИЗ, совокушдость методов качеств, и количеств, анализа по интенсивности ИК, видимого и УФ излучения. К Ф. а. отосят атомно-абсорбционный анализ, фотометрию пламени, турбидиметрию, нефелометрию, люминесцентный анализ, спектроскопию отражения а молекулярно-абсорбц. Ф. а. Часто под Ф. а. понимают только последний метод, основанный на избират. поглощении электромага. излучения в ИК, видимой и УФ областях молекулами определяемого компонента или его соед. с соответств. реагентом. [c.631]


Смотреть страницы где упоминается термин Пламенный атомно-абсорбционный анализ: [c.172]    [c.49]    [c.147]    [c.133]    [c.7]    [c.172]    [c.131]    [c.7]   
Натрий (1986) -- [ c.113 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ атомный

Атомно-абсорбционный анализ



© 2025 chem21.info Реклама на сайте