Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменения кристаллической структуры и реакции разложения

    Термические эффекты, наблюдаемые в методе ДТА, могут вызываться такими физическими явлениями, как плавление, изменение кристаллической структуры,разрушение кристаллической решетки, испарение, кипение и сублимация. Методы ДТА и ТГА позволяют также наблюдать за термическими эффектами, вызванными протеканием химических процессов, таких, как диссоциация или разложение, дегидратация, окисление и восстановление, реакции соединения и замещения. Большинство превращений сопровождается эндотермическим эффектом к исключениям относятся процессы окисления и некоторые структурные превращения. [c.63]


    Кан уже указывалось выше, характерным свойством катализатора является то, что его химический состав, а также количество остаются после реакции без изменения. Было бы, однако, неправильно на основании этого думать, что катализатор не принимает участия в химическом взаимодействии веществ. Катализатор в некоторых случаях, несомненно, участвует в химическом процессе, причем он является активным его участником. То обстоятельство, что количество катализатора и его химический состав не изменяются, можно объяснить тем, что катализатор участвует в образовании промежуточных соединений, из которых он в дальнейшем ходе реакции выделяется в свободном виде. Катализатор после реакции уже не тот, каким он был до реакции. Опытным путем установлено, что физические свойства катализатора изменяются в процессе реакции. Так, например, платина, применяемая в качестве катализатора в производстве серной кислоты, претерпевает физические изменения кристаллическая двуокись марганца, играющая роль катализатора в реакции разложения КСЮд, теряет свою кристаллическую структуру и превращается в аморфный порошок. [c.60]

    Установлено, что процессы зарождения кристаллов новой фазы и их рост пространственно, а часто и по времени, отделены от реакционной поверхности и не оказывают влияния на кинетику топохимических реакций. Кристаллическая структура исходного вещества значительно влияет на кинетику разложения и может резко изменить его скорость. Кристаллический тригидрат меди реагирует в сто раз медленнее аморфного, а тетрагональная модификация глета окисляется в сурик в шесть-семь раз быстрее, чем ромбическая. Большинство исследователей связывает каталитическое действие продукта реакции с деформацией молекул исходного вещества, в результате чего увеличивается их реакционная способность и возникают новые центры реакции. Каталитическая способность продукта реакпии обладает рядом специфических черт, которые не объясняются теорией гетерогенного катализа. При исследовании восстановления нитридов железа водородом было установлено, что каталитическое действие продукта реакции связано не с изменением элементарных стадий и снижением энергии активации, как это происходит в гетерогенном катализе, а с устранением пространственных трудностей. Продукт реакции оказывает упорядочивающее действие на молекулы исход- [c.470]


    Взаимоотношения между гомогенным и гетерогенным катализом изучены лишь слабо главным образом потому, что элементы, способные дать начало обоим видам катализа, пе исследованы по всему интервалу переменных (например, pH и концентрации), определяюнгих состояние катализатора. В качестве катализатора, нри котором можно наблюдать переход от гомогенного механизма к гетерогенному, можно назвать железо. В кислом растворе реакция чисто гомогенная. Однако если увеличивать pH, начинает появляться коллоидное вещество и одновременно происходит изменение скорости (см. рис. 76 на стр. 440). При еще более высоких pH может наблюдаться образование макроскопического осадка, а также и другие кинетические изменения. На скорость катализа могут влиять и изменения физической формы (наличие носителя для катализатора, спекание катализатора или изменение кристаллической структуры). Хотя еще не вполне точно определен pH, при котором начинает появляться коллоидное вещество, не подлежит никакому сомнению факт перехода от гомогенного разложения к гетерогенному при повышении pH. Однако существуют еще значительные неясности по вопросу природы изменения механизма. В некоторых случаях оба вида разложения могут быть качественно объяснены одним и тем же механизмом, например циклическим окислением и восстановлением. В то же время образование комплекса или осаждение катализатора в коллоидном или твердом состоянии может определить т -долю от общего количества имеющегося катализатора, которая способна фактически участвовать в реакции и таким образом влиять на наблюдаемую скорость разложения. Такого рода случай комплексообразования встречается при катализе полимеризации действием перекисей [79]. При чисто гетерогенном катализе наблюдаемая скорость зависит от степени дисперсности твердого катализатора, так как эта дисперсность определяет размер поверхности, находящейся в контакте со средой. Наоборот, вполне возможно, что при переходе от гомогенной системы к гетерогенной коренным образом изменяется и характер реакции, которой подвергается перекись водорода, например ионный механизм может перейти в радикальный. Возможно, что при изменении условий имеется сравнительно тонкая градация в переходе от одного механизма к другому. При выяснении различий гомогенного и гетерогенного катализа нужно всегда учитывать возможное влияние адсорбции из раствора на гомогенный катализ. Так, одновалентное серебро, не обладающее каталитическими свойствами нри гомогенном диспергировании, легко адсорбируется стеклом [80]. В адсорбированном состоянии оно может нриобрести каталитические свойства в результате либо истинного восстаровления до металла, либо только поляризации [81]. Последующее использование поверхности стекла в контакте с более щелочным раствором также может активировать адсорбированное серебро. Это особенно заметно в случае поверхности стеклянного электрода. [c.393]

    С целью выяснения механизма первичных стадий топохими-ческих реакций Рогинский и сотрудники провели микроскопическое, электронно-микроскопическое и рентгенографи еское исследования изменений, наблюдаемых при обезвоживании некоторых кристаллогидратов [47] и при пиролитическом разложении марганцевокислого бария [48]. Обезвоженные откачкой в вакууме кристаллы, например сернокислого магния, сохраняют в электронном микроскопе свой первоначальный вид, но, согласно рентгеновским данным, представляют- собой аморфные или скрытокристаллические образования. Лишь после нагревания до 100—200° в кристаллах наблюдается образование полостей и на рентгенограммах появляются линии, соответствующие кристаллической решетке обезвоженных солей. Под действием электронного облучения кристалл в конце концов превращается в топкую сетку твердого материала, окружающего возникшие пустоты, т. е. появляются характерные скелетные структуры. При нагревании кристаллов марганцевокислого бария на их поверхности появляются отдельные разрастающиеся зоны реакции, приводящие к образованию пленки, которая в виде чехла обволакивает весь кристалл. В результате дальнейшего нагревания кристаллы марганцевокислого бария превращаются в непрочные агрегаты высокодисперсных аморфных частиц. Авторы приходят к заключению, что продвижение реакции разложения в глубь кристалла происходит путем размножения мелких аморфных частиц новой фазы на поверхности раздела, а не за счет роста этих частиц. [c.182]

    Изучение дегидрогенизации и дегидратации спиртов на окиси магния, предпринятое Рубинштейном и Прибытковой [261] в связи с цитированной работой Баландина и Рубинштейна [256], привело также к важным выводам установлена причина изменения активности катализатора в зависимости от способа его приготовления. Оказалось, что эта причина находится в различиях параметра кристаллической решетки, т. е. в изменении межатомного расстояния. Рубинштейн и Прибыткова установили существование оптимального параметра решетки для катализа при одинаковой дисперсности катализатора. Оказалось, что для дегидрогенизации спиртов оптимальный параметр меньше, чем для дегидратации, что согласуется с длинами связей О—Н (1,01 А) и С—О (1,45 А). Впоследствии Рубинштейн совместно с Куликовым [262], Прибытковой [263, 264], Куликовым и Захаровым [265] также преимущественно на реакциях дегидрогенизации— дегидратации спиртов установили некоторые причины избирательности катализаторов по отношению к указанным реакциям. Эти причины связаны с изменением структуры катализаторов с изменением фазового состава, с деформацией решетки, с появлением включений. Интересно, например, что сульфидные и селенидные катализаторы в условиях каталитического разложения спиртов претерпевают фазовые превращения  [c.249]



Смотреть страницы где упоминается термин Изменения кристаллической структуры и реакции разложения: [c.243]    [c.442]    [c.58]    [c.108]    [c.120]   
Смотреть главы в:

Использование радиоактивности при химических исследованиях -> Изменения кристаллической структуры и реакции разложения




ПОИСК





Смотрите так же термины и статьи:

Изменение структуры пор

Кристаллическая структура

Реакции разложения

Реакции структура



© 2025 chem21.info Реклама на сайте