Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Задача 19. Комплексы с переносом заряда

    В данной задаче изучают комплексы с переносом заряда, определяют их стехиометрию и выделяют стабильные кристаллические комплексы. [c.110]

    Первый из них посвящен общим вопросам катализа. В статье К- Б. Яцимирского рассматриваются квантово-механические модели окислительно-восстановительных реакций (в том числе гомогенно-каталитических) с участием комплексных соединений. Для объяснения особенностей кинетики и механизма этих процессов предлагается модель комплекса с переносом заряда и с позиций метода молекулярных орбиталей рассматривается модель с мостиком , через который передается электрон. В. А. Ройтер анализирует взаимоотношения между свойствами катализаторов, реактантов и продуктов реакции, определяющие возможность катализа в каждой каталитической системе и его интенсивность. В этой статье обобщаются результаты исследований связи между термодинамическими характеристиками катализаторов и реакций и каталитической активностью. В проблеме научного предвидения каталитического действия на первый план выдвигается задача создания научной классификации в катализе и намечаются пути поисков ее. [c.3]


    В последние годы установлено, что в твердых органических и полу-органических системах наблюдается высокая электронная проводимость. Этими системами являются твердые донорно-акцепторные комплексы, которые в растворе дают характеристический спектр переноса заряда. Перенос заряда первоначально постулировался Малликеном [119] для объяснения поведения иода в различных растворителях. Подробное рассмотрение теории переноса заряда не входит в задачу этой главы, однако следует отметить, что основой теории является предположение о существовании очень слабо ионного основного и сильно ионного возбужденного состояний комплексов. Именно переходы между этими двумя состояниями обусловливают цвет растворов иода, изменяющийся от фиолетового в цикло-гексане до темно-коричневого в бензоле. Позже эта теория была применена ко многим другим комплексам в растворе. Очень серьезный обзор работ в этой области опубликован Мак-Глинном [109]. [c.47]

    Тем не менее, простая корреляция с е г (или другими указанными выше величинами) часто не выполняется, потому что связь в комплексах не является чисто ионной. Как правило, допорно-акцептор-ная связь слабее ковалентной, но сильнее электростатической. Малликен [258—260] квантово-механически решил задачу о связи в комплексах с переносом заряда и показал, что такими комплексами могут быть, в частности, и донорно-акцепторные комплексы иона металла с электроотрицательными лигандами. Комплекс с переносом заряда может существовать в двух энергетических состояниях. В основном состоянии оба компонента — донор и акцептор — связан ион-дипольными, водородными и лондоновскими дисперсионными силами, а также в небольшой степени — электростатическими и ковалентными, благодаря переносу заряда от донора (лиганда) к акцептору (металлу). В возбужденном состоянии происходит почти полный перенос электрона от донора к акцептору. Степень [c.73]

    Более специфические виды межмолекулярного взаимодействия, такие, как водородная связь, образование комплексов с переносом заряда и другие [5], в газовой хроматографии обычно слабо проявляются из-за высокой температуры колонки. Жидкостная молекулярная хроматография позволяет определить константу Генри для весьма сложных молекул [64]. Поэтому большой интерес представляет разработка хроматоструктурного метода с использованием данных жидкостной хроматографии. Разработка такого метода встречает ряд трудностей. Во-первых, еще в достаточной мере не развита молекулярно-статистическая теория адсорбции из бесконечно разбавленных растворов. Во-вторых, получаемые методом жидкостной хроматографии значения константы Генри недостаточно точны. Однако методом жидкостной хроматографии уже сейчас могут быть найдены довольно простые количественные закономерности изменения термодинамических характеристик при адсорбции из растворов с изменением структуры молекул [65]. Получение и уточнение таких эмпирических закономерностей должны помочь разработать на молекулярном уровне полуэмпирические расчеты константы Генри для жидкостной хроматографии сложных молекул и решить обратную хроматоскопическую задачу — найти параметры структуры молекул из экспериментальных определений константы Генри с помощью жидкостной хроматографии. Важную роль здесь должен сыграть направленный синтез поверхностных соединений определенной структуры. [c.210]


    Как следует из табл. 3 и рис. 1, из различных межмолекулярных сил притяжения основную роль играют электростатические. Хотя влияние поляризации на распределение электронной плотности довольно велико, тем не менее на величине энергии водородной связи она отражается слабо. Такой же результат получается для всех рассчитанных комплексов [27, 28]. Как правило, электростатическая энергия в 5—7 раз превышает энергию поляризации и переноса заряда. Расчеты показывают [27], что полная энергия АЕ ж электростатический вклад АЕэла хорошо коррелирует между собой, причем коэффициент корреляции равен 0,96. Поэтому многие структурные и энергетические свойства водородных связей можно понять с точки зрения электростатики без привлечения поляризации и переноса заряда. Разумеется, для расчета таких свойств комплексов, как дипольный момент, интенсивность колебаний и др., необходим учет всех видов взаимодействия. -В отдельных случаях чисто электростатическая модель может оказаться недостаточной для решения и более простых задач. Это, по-ви-димому, относится к сильным водородным связям, в которых поляризация и перенос заряда играют, вероятно, важную роль и взаимодействие приближается к ковалентному. [c.23]

    Намного более сложной задачей является интерпретация зависимостей от растворителей спектров электронного возбуждения комплексов металлов, и в особенности комплексов переходных металлов [287]. Известно, что спектры последних содержат полосы поглощения, соответствующие следующим трем типам переходов 1) -переходы 2) переходы с переносом заряда и 3) переходы внутри лиганда. Переходы й — -типа на самом деле запрещены и появляются только в результате возбуждающего влияния лигандов это объясняет их слабую интенсивность [176]. В соответствии с энергиями -й -переходов эти линии обычно расположены в видимой или ближней ультрафиолетовой областях их расположение зависит от донорной способности лиганда. Например, полосы /-поглощения комплексов с молекулами воды обычно наблюдаются в видимой области спектра. Если молекулы воды в координационной сфере атома переходного. металла заменить более сильны.м растворителем (или лигандом), г/— /-полосы сдвигаются в направлении УФ-области замена на более слабые донорные лиганды приводит к сдвигу в противоположном направлении. Если замена лиганда сопровождается изменением координационной сферы, интенсивности d—d-noлo тоже обычно изменяются. Понижение симметрии, как правило, сопровождается увеличением молярного поглощения. [c.97]

    Такие же задачи были поставлены и решены в спектроэлектрохимическом исследовании комплексов кобальта и меди с шиффо-выми основаниями, образованными салициловым (или его замещенными) альдегидом и изомерными фенилендиаминами [120]. Исследование проводили в диметилформамиде в тонкослойной ячейке. Комплексы кобальта этого тина состава СоЬ (Ь — дианион лиганда) на минигридном электроде также образуют две обратимые окислительно-восстановительные пары, отличающиеся степенью окисления центрального атома, Со(11)/Со(1П) и Со(1)/Со(П), хотя по данным циклической вольтамперометрии эти одноэлектронные переходы скорее являются квазиобратимы-ми. Рассчитанный формальный окислительно-восстановительный потенциал Е пары Со(1)/Со(П) коррелирует со значением энергии полосы переноса заряда металл—лиганд. Обратимая окислитель-но-восстановительная пара Си(1)/Си(П) наблюдается и для комплексов меди с этими лигандами. [c.55]

    Хорошо известны также спектры переноса заряда чистоорганических молекулярных комплексов, однако их рассмотрение не входит в задачу данной книги. Такие спектры могут также возникать в растворах неметаллических неорганических веществ в органических растворителях так, интенсивная полоса (Ьде- " 4) с Ямакс, лежащим между 290 и 380 ммк, наблюдается при растворении Ь в бензоле или его метилированных производных [34]. Аналогично ведет себя бром. [c.182]

    Существует ряд патентов па применение МОС в качестве полупроводниковых веществ [320—322]. Возможная у солеобразных МОС ионная проводимость практически выпадает из внимания при решении задач электроники, по-видимому, вследствие экзотичности, труднодостушюсти и малой изученности МОС. Ряд полупроводниковых МОС, как комплексов с переносом заряда, так и сопряженных полимеров, может быть использован в качестве термосопротивлеппй в силу высоких значений температурного коэффициента сопротивления. [c.74]

    При температурах от 70 до 200° С комплексы ТЦХМ с Ь1, N3, К и Сз [последний имел состав Сз2(ТЦХМ)з1 не обнаруживали в указанных условиях гидрирующей активности. Это указывает на то, что кроме наличия избыточного электрона в системе л-электронов акцепторного компонента определяющее значение могут иметь прочность и полярность связи донора с акцептором. Выявление основных факторов, определяющих уникальные каталититические свойства органических комплексов с переносом заряда и установление механизма каталитического действия комплексов, остаются задачей дальнейших исследований. [c.100]


    Байер [10], обсуждая проблему синтеза высокомолекулярных комплексообразующих веществ, обладающих способностью связывания ионов металла, проводит аналогию с природными веществами подобного типа В природе существуют высокомолекулярные комплексообразующие соединения, служащие для обогащения, переноса и аккумулирования тяжелых металлов [И]. Можно, например, указать на процесс концентрирования (в миллионы раз) ванадия из морской воды кровеносными клетками тунникатов [И, 12]. Апоферритин — белок млекопитающих, аккумулирующий железо,— может связывать в виде комплексов только железо [13] . Аналогичные примеры приводит и Синявский [1] Гумусовые вещества почв селективно связывают магний и кальций. Накопление золота некоторыми растениями так значительно, что они могут служить индикаторами месторождений золота и т. д. Все это дает основание предполагать, что создание сорбентов, обладающих высокой селективностью, вполне осуществимая задача . Однако отсутствие общего теоретического направления методов синтеза таких продуктов создает большие трудности в осуществлении заманчивых возможностей высокоселективных процессов поглощения веществ. Для повышения избирательности обычных универсальных ионитов исследователи пользуются различными приемами, которые основаны на учете факторов, влияющих в той или иной мере на избирательность (заряд противоионов, сольватация и набухание, степень сшивки и др.). Влияние этих факторов проявляется следующим образом [1] 1) Из разбавленных растворов ионит предпочтительнее поглощает противоионы с большим числом зарядов, при этом с ростом концентрации раствора электроселективность ионита уменьшается. 2) Ионит предпочтительнее поглощает противоион с меньшим молярным объемом. Избирательность увеличивается с увеличением разности молярных объемов, емкости и количества поперечных связей в ионите, с уменьшением концентрации раствора и с уменьшением молярной доли меньшего иона. 3) С повышением температуры избирательность] ионита уменьшается. [c.100]


Смотреть страницы где упоминается термин Задача 19. Комплексы с переносом заряда: [c.619]    [c.41]   
Смотреть главы в:

Практикум по физической органической химии -> Задача 19. Комплексы с переносом заряда




ПОИСК





Смотрите так же термины и статьи:

Комплекс с переносом заряда

Комплекса заряд

Перенос заряда

комплексы с переносом



© 2025 chem21.info Реклама на сайте