Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Адсорбция из растворов и молекулярная жидкостная хроматография

    Из этого неполного перечня видно, как важны исследования химии поверхности неорганических и органических твердых тел и их межмолекулярного взаимодействия с компонентами различных сред. Эти исследования требуют объединения методов неорганического и органического синтеза с самыми современными физическими методами изучения структуры поверхности твердого тела и строения молекул. В кратком курсе лекций невозможно осветить все научные и прикладные аспекты химии поверхности твердых тел, ее модифицирования и влияния на межмолекулярные и химические взаимодействия с различными средами. В пособии рассмотрена хими/ поверхности адсорбентов, применяемых в газовой и молекулярной жидкостной хроматографии, и, соответственно, адсорбция из газовой фазы и жидких растворов при малых концентрациях, лежащая в основе селективности этих видов хроматографии. Эти проблемы исследованы как на макроскопическом уровне с использованием термодинамических характеристик адсорбции, так и на микроскопическом (молекулярном) уровне с привлечением молекулярно-статистической теории адсорбции и теории межмолекулярных взаимодействий. [c.7]


    Адсорбция из растворов и молекулярная жидкостная хроматография [c.248]

    АДСОРБЦИЯ ИЗ РАСТВОРОВ И МОЛЕКУЛЯРНАЯ ЖИДКОСТНАЯ ХРОМАТОГРАФИЯ [c.382]

    Наконец, третья часть курса посвящена адсорбции из растворов и молекулярной жидкостной адсорбционной хроматографии. Здесь обращается внимание на качественные связи измеряемых величин со структурой молекул раствора и природой адсорбента. [c.4]

    Развитие количественной молекулярно-статистической теории селективности жидкостной хроматографии в различных полуэмпирических приближениях облегчается при использовании такого рода корреляционных зависимостей между определенными из хроматограмм константами Генри для адсорбции из растворо в и параметрами структуры молекул компонентов для данного адсорбента и данного элюента, а затем и при изменении химии поверхности адсорбента и состава элюента. [c.283]

    Существуют четыре вида хроматографического анализа адсорбционная хроматография, осадочная хроматография, распределительная хроматография н газо-жидкостная хроматография. В зависимости от механизма адсорбции растворенного вещества адсорбционная хроматография может быть разделена на два подвида молекулярная хроматография и ионообменная хроматография. С помощью молекулярной хроматографии разделяют неэлектролиты в неводных растворах. Ионообменная хроматография используется для разделения ионов. [c.348]

    Однако термин обращенно-фазовая хроматография имеет лишь формальный характер и этот вариант хроматографии с точки зрения теории адсорбции из растворов ни в коей мере не является необычным или обращенным . Этот неудачный термин не способствует раскрытию молекулярной основы разделения, поэтому в дальнейшем он нами не применяется. По существу же различие между обычной и обращенно-фазовой жидкостной хроматографией заключается в том, что в первом случае разделение происходит преимущественно за счет различий в специфических взаимодействиях компонентов и элюента со специфическим адсорбентом, а во втором случае — преимущественно за счет различий в неспецифических взаимодействиях молекул компонентов и элюента с адсорбентом, а также, если это имеет место, — за счет различий в специфических взаимодействиях молекул компонентов с элюентом. [c.208]

    В зависимости от скорости диффузии компонентов в растворе и размеров пор адсорбента жидкостная хроматография на адсорбентах может приближаться к равновесной или к молекулярно-ситовой. В нервом случае использование молекулярных основ селективности связано с разработкой теории адсорбции из растворов на молекулярном уровне. Однако эта теория разработана недостаточно и позволяет пока делать только качественные заключения. [c.56]


    Древесный активный уголь БАУ, являющийся пористой массой, после пропитки ацетоном сохраняет еще какую-то остаточную адсорбционную способность, однако адсорбция на его поверхности диацетилена из раствора в ацетоне вряд ли может иметь место. Из опыта газо-жидкостной хроматографии известно, что когда жидкая фаза и испытуемое вещество являются неполярными или имеют одинаковую полярность, то на поверхности носителя адсорбируются молекулы с большим молекулярным весом. Если же присутствуют соединения с разной полярностью, то молекулы соединений с ббльшим молекулярным весом, но имеющие меньшую полярность, могут быть вытеснены с поверхности носителя молеку- [c.190]

    В монографии (1-е изд.— 1973 г.) рассматриваются адсорбционные и хроматографические методы исследования хи-мин поверхности н структуры твердых тел. Подробно описаны статические н газохроматографические способы получения изотерм адсорбции газов н паров, определения теплот адсорбции и теплоемкости адсорбционных систем, структурных характеристик твердых тел, спектроскопические методы исследования химической природы поверхности, методы изучения адсорбции из бинарных и многокомпонентных растворов и их применение в жидкостной молекулярной хроматографии. В приложении приведены способы получения адсорбентов и носителей и химического модифицирования их поверхности для использования в молекулярной хроматографии. [c.215]

    Накопление систематических данных по адсорбции из разбавленных растворов и по их хроматографии с учетом рассмотренных факторов должно составить необходимую базу для развития качественной, а затем и количественной молекулярной теории жидкостной адсорбционной хроматографии. [c.59]

    От влияния геометрической неоднородности поверхности и пор можно в значительной степени освободиться, применяя кристаллические непористые и пористые, а также аморфные достаточно широкопористые адсорбенты и модифицируя химически или адсорбционно их поверхность. В этом случае основное влияние на адсорбционные свойства и на селективность газо-адсорбционных колонок будет оказывать химия поверхности адсорбента. Химия поверхности твердого тела определяет характер и энергию межмолекулярного взаимодействия, возникающего между молекулами разделяемых веществ и твердым телом. Взаимодействие молекул газовой смеси с однородной твердой поверхностью и состояние адсорбированных молекул на достаточно однородной поверхности (газо-адсорбционный вариант хроматографии) легче поддаются теоретической трактовке, чем молекулярные взаимодействия при растворении в объеме жидкой пленки (газо-жидкостный вариант хроматографии). В растворе все молекулы подвижны и молекулы данного компонента со всех сторон окружены другими молекулами, а при адсорбции на достаточно гладкой поверхности твердого тела молекулы взаимодействуют в основном только с ближайшими силовыми центрами этого твердого тела и эти центры фиксированы. [c.16]

    Накопление значений констант Генри для адсорбции из бесконечно разбавленных растворов с соответствующим контролем чистоты элюента и поверхности адсорбента необходимо для создания полуэмпирической теории селективности в жидкостно-адсорбционной хроматографии на молекулярном уровне. [c.172]

    Жидкостно-адсорбционная молекулярная хроматография в ее приближающемся к равновесному варианте основана на различии в константах равновесия системы раствор — адсорбент для разных компонентов раствора. Даже при полном разделении компонентов смеси при прохождении данного компонента через слой адсорбента в колонне раствор содержит по крайней мере два вещества компонент анализируемой смеси и растворитель. Таким образом, теория равновесной жидкостно-адсорбционной хроматографии должна основываться на теории адсорбции из бинарных [1 —16] и более сложных [1, 4, 17, 18] жидких растворов. Эта теория разработана еще недостаточно и носит чисто термодинамический характер. Поэтому коэффициенты активности компонентов раствора в адсорбированном состоянии и константы равновесия определяются из самих экспериментальных изотерм адсорбции. Константы равновесия при упрощенных представлениях о структуре адсорбционного слоя могут быть определены через разности работ смачивания чистыми жидкими компонентами, которые, в свою очередь, могут быть найдены из разности работ насыщения адсорбента парами чистых жидких компонентов и их поверхностных натяжений. Однако все это ограничивает возможности расчета и делает его неточным. [c.205]

    Для адсорбции из растворов характерно взаимное вытеснение молекул его компонентов на поверхности адсорбента, т. е. адсорбция одних молекул обязательно сопровождается десорбцией других. Теплота адсорбции данного компонента из жидкого раствора определяется разностью энергий взаимодействия его молекул с адсорбентом и с соседними молекулами в объемном и поверхностном растворах. Поэтому она в несколько раз (иногда на порядок) меньше теплоты адсорбции того же компонента из газовой фазы. Это позволяет, во-первых, осуществлять жидкостно-адсорбционную хроматографию при значительно более низких температурах и, во-вторых, широко использовать изменение молекулярного поля растворителя-элюента, добавляя к нему сильнее или слабее адсорбирующееся вещество. [c.415]


    Влияние химии поверхности адсорбента и ее модифицирования в жидкостно-адсорбционной хроматографии в общем сходно с таковым в газовой хроматографии, однако при этом надо учитывать конкурирующие взаимодействия с молекулами растворителя. Уменьшение специфичности адсорбента резко снижает величину гиббсовской адсорбции молекул группы В, например ароматических углеводородов, из растворов в к-алканах (молекулы группы А). В этих случаях величина гиббсовской адсорбции ароматического углеводорода может изменить знак — стать отрицательной (положительно начинает адсорбироваться элюент — к-алкап), так что изотерма проходит азеотропную точку [3, 64]. С этой возможностью надо обязательно считаться при разделении близких по свойствам компонентов и при регулировании молекулярного поля адсорбента и элюента, так как вблизи азеотропной точки разделение не произойдет. [c.56]

    Наиболее распространенным хроматографическим методом разделения смеси веществ является элютивный, или элюционный, его вариант. В этом процессе смесь веществ вводится в верхнюю часть колонки и далее перемещается вдоль колонки при непрерывном введении растворителя или раствора в жидкостной хроматографии или газа в газовой и газо-жидкостной хроматографии. Аналогичные процессы протекают и на листе бумаги или в тонком слое твердого материала при соответствующих вариантах хроматографического метода. Общей особенностью всех этих типов элю-тивного процесса прежде всего является подача в колонку единовременно ограниченного количества разделяемых веществ. По мере перемещения по колонке вещества встречаются с чистым растворителем в верхней части своей зоны и с чистым сорбентом в нижней части. Перемещение зоны сопровождается преимущественным переносом в подвижную фазу вещества у верхней границы хроматографической зоны и преимущественным пернесением вещества из подвижной фазы на твердый материал у нижней границы хроматографической зоны. В связи с этим понятно, что скорость перемещения зоны определяется законами сорбции каждого компонента. Вычислить скорость перемещения хроматографической зоны не представляет труда с помощью уравнений (1) или (1а), если известна зависимость величины ттг от с. В случае молекулярной адсорбции эта зависимость представляет собой изотерму адсорбции, например изотерму Лэнгмюра  [c.111]

    Большинство природных и синтетических веществ нельзя перевести в газовую фазу, поэтому область применения жидкостной хроматографии значительно шире, чем газовой. В последние годы аналитическая жидкостная хроматография в различных ее вариантах (колоночная, тонкослойная) развивается очень быстро. Однака молекулярная теория жидкостной хроматографии, как и молекулярная теория адсорбции из растворов (см. лекции 14 и 15), еще не разработана. Причиной этого является сложность системы и необходимость учета межм олекулярного взаимодействия молекул всех компонентов раствора не только с адсорбентом, но и друг с другом, причем находящихся как в адсорбированном состоянии, так и в растворе. Поэтому развитие молекулярной теории жидкостной хроматографии зависит от состояния и развития молекулярной теории жидкостей и разбавленных растворов. Поэтому, как и в лекциях 14 и 15 по адсорбции из растворов, мы ограничимся здесь лишъ качественным рассмотрением этих вопросов. [c.282]

    На неполярных адсорбентах из сильно полярных элюентов, например, водно-спиртовых смесей, сильнее адсорбируются молекулы, содержащие неполярные углеводородные цепи, циклы или группы (см. рис. 14.4 и 14.15). В основном эти молекулы удерживаются на неполярной (гидрофобной) поверхности за счет адсорбции их неполярных частей, т. е. за счет неспецифического межмолекулярного взаимодействия с адсорбентом, как это было показано в разделе 16.5 при адсорбции ароматических углеводородов из водных растворов на гидроксилированной поверхности кремнезема. Полярные же группы молекул дозируемого вещества при адсорбции на неполярном адсорбенте из полярного элюента уменьшают удерживание, так как их межмолекулярное взаимодействие с полярными грушпами молекул элюента, влияя на их ориентацию, ослабляет межмолекулярное взаимодействие молекул дозируемого вещества с адсорбентом и облегчает их возвращение в объем элюента. Таким образом, в этом случае удерживание в основном определяется, во-первых, неспецифическим межмолекулярным взаимодействием молекул дозируемого вещества с адсорбентом и, во-вторых, специфическим межмолекулярным взаимодействием этих молекул с элюентом, причем последнее уменьшает удерживание. Этот молекулярный механизм удерживания надо иметь ввиду, так как распространенный в литературе по жидкостной хроматографии термин обращеннофазная хроматография не передает существа дела. Действительно, из лекции 16 следует, что органические вещества, во-первых, удерживаются из водных растворов и на полярном адсорбенте (гидроксилированной поверхности силикагеля) и, во-вторых, порядок выхода органических веществ может быть изменен при изменении состава элюента как на полярном, так и неполярном адсорбентах. [c.307]

    Рассмотренный материал дает возможность поставить и обратную задачу по удерживаемым объемам охарактеризовать проявляющиеся межмолекулярные взаимодействия, причем не только с адсорбентом и с элюентом на поверхности адсорбента, но и в объеме элюента. Особое значение имеет установление неизвестных параметров структуры сложных молекул на основании измерений удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов, см. лекцию 14), т. е. использование жидкостной хроматографии для суждения о структуре молекул дозируемых веществ. Хроматоскопические задачи на основе констант Генри для адсорбции из растворов, определенных методом жидкостной адсорбционной хроматографии, встречают, конечно, значительно большие затруднения, чем при использовании констант Генри в газоадсорбционной хроматографии (см. лекцию 10). Эти затруднения связаны с тем, что молекулярно-статистическая теория адсорбции даже из разбавленных растворов еще не разработана. Однако из приведенных в лекциях 16 и 17 экспериментальных данных видно, что существуют определенные эмпирические связи между структурой разделяемых методом жидкостной хроматографии молекул и характеристиками их удерживания. Здесь необходимо прежде всего накопить надежные экспериментальные данные для молекул разной структуры в определенных системах элюент — адсорбент. В конце лекции 10 было отмечено, что даже качественный хроматоскопический анализ может представлять большой интерес. В случае же жидкостной хроматографии представляется возможность распространить его на большое количество сложных по структуре и поэтому мало изученных молекул. [c.332]

    Более специфические виды межмолекулярного взаимодействия, такие, как водородная связь, образование комплексов с переносом заряда и другие [5], в газовой хроматографии обычно слабо проявляются из-за высокой температуры колонки. Жидкостная молекулярная хроматография позволяет определить константу Генри для весьма сложных молекул [64]. Поэтому большой интерес представляет разработка хроматоструктурного метода с использованием данных жидкостной хроматографии. Разработка такого метода встречает ряд трудностей. Во-первых, еще в достаточной мере не развита молекулярно-статистическая теория адсорбции из бесконечно разбавленных растворов. Во-вторых, получаемые методом жидкостной хроматографии значения константы Генри недостаточно точны. Однако методом жидкостной хроматографии уже сейчас могут быть найдены довольно простые количественные закономерности изменения термодинамических характеристик при адсорбции из растворов с изменением структуры молекул [65]. Получение и уточнение таких эмпирических закономерностей должны помочь разработать на молекулярном уровне полуэмпирические расчеты константы Генри для жидкостной хроматографии сложных молекул и решить обратную хроматоскопическую задачу — найти параметры структуры молекул из экспериментальных определений константы Генри с помощью жидкостной хроматографии. Важную роль здесь должен сыграть направленный синтез поверхностных соединений определенной структуры. [c.210]

    Может быть успешно решена и обратная задача по величинам удерживания оценить энергию тех или иных межмолекулярных взаимодействий, причем энергию взаимодействия не только на поверхности адсорбента, но и энергию взаимодействия в объеме подвижной фазы. Особую важность имеет задача установления неизвестных параметров структуры молекул на основании экспериментальных величин удерживаемых объемов для нулевой пробы (констант Генри для адсорбции из растворов), т. е. использование жидкостной хроматографии для решения структурных задач (см. гл. 8). Хроматоструктурный анализ на основе констант Генри для адсорбции из растворов, определенных методом ЖАХ, встречает затруднения, связанные с тем, что молекулярно-статистическая теория адсорбции из растворов еще не разработана и еще нет приближенных, но достаточно надежных методов учета молекулярного поля растворителя-элюента. Однако из приведенных выше рисунков и таблиц видно, что существует возможность установить эмпирические связи структуры разделенных молекул с их характеристиками удерживания также и в жидкостной хроматографии. Здесь необходимо прежде всего накопить надежные экспериментальные данные. [c.249]

    Молекулярной основой теории удерживания в жидкостной хроматографии должна стать молекулярно-статистическая теория адсорбции из разбавленных растворов. Эта теория делает еще первые щаги [18а, 186], так как учет межмолекулярного взаимодействия растворителя с адсорбентом и с молекулами рассматриваемого компонента довольно сложен. Однако можно надеяться, что и в случае жидкостно-адсорбционной хроматографии атом-атомное приближение и использование атом-атомных потенциалов, полученных с помощью молекулярно-статистической теории адсорбции газов и газо-адсорбционной хроматографии, позволит, по крайней мере для более простых систем, развить количественные методы расчета констант Генри. Поэтому для получения надежных значений констант Генри при разных температурах для разных растворителей и адсорбентов необходимо проводить подобные измерения и в жидкостно-адсорбционной хроматографии. Эти задачи должны быть рещены сначала хотя бы для простейших случаев квазижестких молекул компонентов [c.205]

    Разделение на специфических адсорбентах. Влияние химии поверхности адсорбента и ее модифицирования на жидкостно-адсорб-нионную хроматографию компонентов из более слабо адсорбирующегося растворителя в общем сходно с таковым в газо-адсорбционной хроматографии. Однако в случае жидкостной хроматографии надо учитывать молекулярные взаимодействия с молекулами растворителя в соответствии с закономерностями адсорбции из растворов. Поэтому в жидкостно-адсорбционной хроматографии целесообразнее говорить о селективности хроматографической системы в целом адсорбент — растворенные вещества — растворитель. В качестве адсорбентов в жидкостно-адсорбционной хроматографии в основном использовались различные препараты окиси алюминия (активная,нейтральная и кислая окись алюминия) [46] и силикагели как в обычном виде,т.е. [c.215]

    Адсорбционная жидкостная хроматография основана на различной адсорбируемости компонентов разделяемой жидкой смеси на поверхности твердого адсорбента с достаточно большой поверхностью. Адсорбция происходит под действием межмолекулярных сил и определяется различием взаимодействий с адсорбентом молекул компонентов раствора и элюеита. В хроматографии в основном используется обратимая молекулярная (физическая) адсорбция. В некоторых специальных случаях используется слабое обратимое комплексообразование [3—6]. [c.413]

    Повышение эффективности хроматографического разделения в значительной мере связано с оптимизированным по различным параметрам колонны приближением к термодинамической селективности. Поэтому весьма важна оптимизация выбора неподвижной фазы (адсорбента, растворителя) и элюента на основе качественной и по возможности количественной связи определяющих селективность констант термодинамического равновесия с характеристиками меукмолекулярного взаимодействия газовых и жидких растворов с адсорбентами. В простейших случаях неспецифического взаимодействия для этого используются молекулярно-статистические выражения удерживаемых объемов (констант адсорбционного равновесия) газов и паров через атом-атомные потенциальные функции взаимодействия атомов молекулы с атомами твердого тела в соответствующих валентных состояниях этих атомов. В статье приводятся результаты молекулярно-статистических расчетов удерживаемых объемов для ряда углеводородов на графитированной термической саже и в цеолитах. Дается оценка энергии специфического молекулярного взаимодействия при адсорбции, в частности энергии водородной связи, и рассматривается качественная связь селективности разделения с соотношением вкладов специфических и неснецифических взаимодействий в общую энергию адсорбции и с температурой. С этой точки зрения рассматриваются возможности использования в хроматографии атомных, молекулярных и ионных кристаллов, гидроксилированных и дегидроксилированных поверхностей окислов, модифицирующих монослоев и полимеров. Рассматриваются также некоторые возможности адсорбционной жидкостной молекулярной хроматографии с использованием соответствующего подбора геометрии и химии поверхности адсорбента, молекулярного поля (состава) элюента и температуры колонны. Приводятся примеры перехода от адсорбционных к ситовым гель-фильтрационным разделениям полимеров па микропористых кремнеземах. [c.33]

    Как и в газовой хроматографии, разделение в жидкостно-адсорбционной молекулярной хроматографии в ее приближающемся к равновесному варианте основано на различии в константах равновесия растворов, содержащих разделяемые компоненты, с адсорбентом. Даже при полном разделении компонентов раствора при прохождении через адсорбент пика данного компонента раствор содержит но крайней мере два вещества компонент анализируемой смеси и растворитель — элюент. Для адсорбции из растворов характерно взаимное вытеснение молекул компонентов на поверхности адсорбента, т.е. адсорбция одних молекул обязательно сопровождается десорбцией других. Удерживаемый объем и теплота адсорбции для данного компонента из жидкого раствора определяется не только энергией взаимодействия с адсорбентом, как в случае газовой хроматографии из слабо адсорбирующегося газа-носителя, но и разностью энергии взаимодействия его молекул с молекурярными полями адсорбента и других плотных частей системы — поверхностного и объемного растворов. Поэтому теплота адсорбции из растворов обычно в несколько раз меньше теплоты адсорбции того же компонента из газовой фазы. Это позволяет, во-первых, осуществлять жидкостноадсорбционную хроматографию при значительно более низких температурах и, во-вторых, широко использовать измеиение лшлекулярного поля как адсорбента, так и растворителя — элюента. [c.56]


Смотреть страницы где упоминается термин Адсорбция из растворов и молекулярная жидкостная хроматография: [c.6]    [c.2]    [c.281]    [c.48]    [c.56]    [c.13]   
Смотреть главы в:

Межмолекулярные взаимодействия в адсорбции и хроматографии -> Адсорбция из растворов и молекулярная жидкостная хроматография




ПОИСК





Смотрите так же термины и статьи:

Адсорбция из растворов

Адсорбция молекулярная

Адсорбция хроматографии

Жидкостная адсорбция

Жидкостная хроматография хроматографы

Раствор молекулярные

Хроматография жидкостная

Хроматография жидкостно-жидкостная

Хроматография молекулярная

Хроматографы жидкостные



© 2025 chem21.info Реклама на сайте