Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электродные процессы с предшествующей поверхностной химической реакцией

    Электродные процессы с предшествующей поверхностной химической реакцией [c.58]

    Стадия превращения вещества А в вещество О называется предшествующей химической реакцией, а стадия превращения R в В — последующей химической реакцией. Часто электродные процессы осложняются стадией образования новой фазы. Так, при электроосаждении металлов реализуется стадия образования кристаллических зародышей, а при электрохимическом выделении газов — стадия зарождения пузырьков газа. В ходе электрохимического процесса может происходить перемещение частиц по поверхности электрода (стадия поверхностной диффузии) от центров, на которых идет разряд, до некоторых других, где продукту реакции находиться энергетически наиболее выгодно. Если поверхность электрода несет заряд, одинаковый с зарядом реагирующей частицы, то электрическое поле двойного слоя препятствует адсорбции этой частицы и необходимо учитывать стадию вхождения реагирующей частицы в двойной электрический слой. [c.202]


    Майрановский объясняет протеканием тех же процессов, о которых говорилось выше. Однако благодаря адсорбции катализатора в этом случае химическая реакция протонизации происходит на самой электродной поверхности. Часто наблюдаются также смешанные токи [84—87], когда предшествующая реакция (XI) протекает и на поверхности электрода и в объеме раствора. Доля поверхностного тока, обусловленного реакцией, протекающей на поверхности электрода, возрастает при увеличении адсорбции электрохимически неактивной формы катализатора [84—87]. Адсорбция катализатора в целом зависит от адсорбции его кислотной и основной форм, находящихся между собой в протолитическом равновесии. Поверхностная активность основной формы значительно превосходит активность кислотной формы более того, адсорбируемость кислотной (катионной) формы катализатора на отрицательно заряженной поверхности электрода изменяется с потенциалом гораздо меньше, чем основной, поэтому изменение адсорбируемости катализатора в целом определяется в основном изменением адсорбируемости его основной формы. Однако количество адсорбированного катализатора зависит также и от соотношения между формами, т. е. от величины pH раствора. [c.393]

    Предельный ток может возникать и в тех случаях, когда лимитирующей стадией оказывается не диффузия, а какая-либо другая стадия электродного процесса. Например, если разряжающийся ион образуется в предшествующей химической реакции (диссоциация слабого электролита, комплекса и т. д.), скорость которой не зависит от потенциала электрода, имеет место предельный кинетический ток если реакция протекает в объеме раствора, говорят об объемном кинетическом токе если на поверхности электрода — о поверхностном кинетическом токе. При торможении электродного процесса адсорбирующимися продуктами может возникнуть предельный адсорбционный ток, — Прим. ред. [c.172]

    Для того чтобы можно было использовать измерения кинетических токов, например, для исследования кинетики химических реакций, предшествующих электродному процессу, необходимо определить толщину реакционного слоя (X и поверхностную концентрацию формы А. [c.286]

    Характер вольтамперных кривых в случае поверхностных необратимых электродных процессов, т. е. процессов с участием адсорбированных частиц в электрохимической или предшествующей ей химической стадиях, подчиняется [3, 4] закономерностям теории замедленного разряда и уравнениям Фрумкина [5], связывающим адсорбцию веществ на электроде с его потенциалом. На основании этих закономерностей удалось количественно описать форму как полярограмм с адсорбцией деполяризатора [3], так и поверхностных каталитических волн водорода [2, 4]. Однако строгий вывод уравнений для поверхностных кинетических токов, когда одной из лимитирующих стадий электродного процесса является диффузия, наталкивается на серьезные математические трудности. Тем не менее, как будет показано ниже, при введении некоторых упрощающих допущений удалось вывести уравнения и для кинетических волн с поверхностной предшествующей реакцией. [c.364]


    Вследствие того, что заряд кислотных компонентов всегда на единицу выше, чем заряд соответствуюш,их им оснований, кислотноосновное равновесие у отрицательно заряженной поверхности электрода сдвинуто (по сравнению с равновесием в объеме раствора) в сторону кислотной формы. Сдвиг этот бывает весьма заметным так, в 0,1 М растворе 1,1-зарядного электролита при потенциале электрода около —1,5 в (по кал, э.) pH у поверхности катода на две единицы ниже, чем в объеме раствора. Различие в концентрациях доноров протонов у поверхности электрода и в объеме раствора, как следует из уравнения (24), зависит от величины я) , поэтому в случае процессов с предшествующей протонизацией (когда волн зависят от pH [9,12]) изменение pH в приэлектродной области является дополнительным фактором, влияющим на Еу волн при изменении строения двойного слоя. В наиболее часто встречающемся случае электродных процессов с предшествующей реакцией — поверхностных квазидиффузионных [12, 91 ] волн (т. е. волн, высота которых вследствие достаточно высокой скорости предшествующей реакции практически достигает уровня предельного диффузионного тока по находящемуся в растворе деполяризатору, но потенциал полу-волны продолжает оставаться функцией скорости этой предшествующей химической реакции),— зависимость Еч от 1(31, учитывающая изменение эффективного скачка потенциала и изменение приэлектродной концентрации заряженных частиц, выражается уравнением [9, 12]  [c.34]

    Любая электрохимическая реакция протекает на поверхности раздела фаз электрод — раствор и является гетерогенной. Как гетерогенная химическая реакция она также является стадийной, текущей через ряд последовательных стадий 1) транспорт вещества к электроду — к зоне реакции 2) собственный электрохимический акт взаимодействия реагирующей частицы с электродом (стадия разряда — ионизация) 3) отвод образовавшихся продуктов реакции от поверхности электрода. Первая и третья стадии имеют одни и те же закономерности и. чазываются стадиями мас-сопереноса, осуществляемыми за счет малых коэффициентов миграции и конвекции. Для всех электродных процессов наличие этих трех стадий обязательно. Однако наряду с этим ряд электрохимических процессов может осложняться предшествующими и последующими химическими реакциями, протекающими в объеме раствора или на поверхности электрода. Кроме того, в ходе электрохимической реа1 ции может происходить передвижение частиц по поверхности электрода (стадия поверхностной диффузии). Скорость электрохимического процесса, состоящего из ряда последовательных стадий, определяется наиболее замедленной, лимитирующей стадией. Для установления природы лимитирующей стадии, скорости ее течения, механизма электродного процесса, необходимо знать закономерности, которым подчиняются поляризационные характеристики / и Л . [c.458]

    До сих пор при рассмотрении электродных процессов, ограниченных скоростью предшествующих химических реакций, предполагалось, что эти реакции протекают в некотором реакционном объеме вблизи поверхности электрода. При выводе уравнений кинетических токов Коутецкий, Брдичка, Гануш, Делахей и другие исследователи также исходили из предположения, что предшествующие химические реакции протекают в объеме раствора у поверхности электрода. Можно, однако, показать [479, 480, 530, 531], что во многих случаях, особенно когда в предшествующих реакциях принимают участие органические молекулы, эти реакции имеют место не только в объеме раствора, но и на поверхности электрода с участием адсорбированных частиц. Наблюдаемый кинетический ток в этих случаях является суммой двух слагаемых поверхностного и объемного токов, характеризующих процессы, протекающие на поверхности электрода и в объемном реакционном слое. Большинство органических соединений обладает заметной поверхностной активностью на границе ртуть — раствор при потенциалах ртути, не очень удаленных от точки нулевого заряда (раздел А главы П1) поэтому подавляющее большинство кинетических волн с участием органических деполяризаторов имеет поверхностную составляющую тока. [c.113]

    Электродные реакции — это гетерогенные процессы, и их кинетика определяется закономерностями переноса заряда и массопередачи. В некоторых случаях необходимо учитывать также сопряженные химические реакции. Перенос заряда может осуществляться в одну или в несколько стадий ниже будут рассмотрены процессы, включающие одну, две или более последовательных стадий. Химические реакции, сопровождающие перенос заряда, иногда протекают достаточно быстро, и их можно не учитывать при выводе кинетических зависимостей, но часто такое упрощение недопустимо. Сопряженные реакции могут протекать исключительно на поверхности электрода (гетерогенные, или поверхностные, реакции) или же в околоэлектродном пространстве (гомогенные, или объемные, реакции). Они могут предшествовать переносу заряда или следовать за ним возможны также химические превращения промежуточных продуктов электролиза. [c.165]


    В заключение — несколько слов о влиянии температуры на форму волны. Обратимые волны с ростом температуры становятся более пологими в соответствии с изменением значения RTjnF. Таким образом изменяется, например, наклон 1-й квазиобратимой волны на полярограммах аниона динитрометана [130]. Так же, по-видимому, изменяется наклон необратимых волн, которые отвечают электродным процессам, не осложненным адсорбционными явлениями. При этом принимается, что в сравнительно узкой области изменения температуры значение а не меняется. У волн, отвечающих процессам, осложненным адсорбционными эффектами, наклон при повыщении температуры в зависимости от условий может как увеличиваться, так и уменьшаться, на полулогарифмических графиках могут появляться или исчезать перегибы, т. е. наблюдаются все те явления, которые происходят с подобными волнами при изменении pH раствора (у волн с поверхностной пред-ществующей протонизацией) или состава водно-органической смеси. Если на волне имеется спад, обусловленный десорбцией деполяризатора (или его неактивной формы — в случае кинетических или каталитических волн), то, в зависимости от того, увеличивается ли сильнее с ростом температуры константа скорости электрохимической (или предшествующей химической) реакции или быстрее уменьшается адсорбируемость, спады на волнах могут либо исчезать, либо становиться глубже. Так, при повышении температуры спад на волне фенолфталеина становится менее глубоким [139] наоборот, углубление спада с ростом температуры часто наблюдается на поверхностных каталитических волнах водорода имеет место оно и на волне восстановления метилового эфира 5-хлор-2-тиофенкарбоновой кислоты [140]. [c.78]


Смотреть страницы где упоминается термин Электродные процессы с предшествующей поверхностной химической реакцией: [c.149]   
Смотреть главы в:

Полярография в органической химии -> Электродные процессы с предшествующей поверхностной химической реакцией




ПОИСК





Смотрите так же термины и статьи:

Поверхностная реакция

Процесс электродные

Электродные реакции

Электродные реакции процессы

Электродный процесс Процесс электродный



© 2025 chem21.info Реклама на сайте