Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Исследование химических реакций с нестационарной кинетикой

    Исследование химических реакций с нестационарной кинетикой [c.275]

    В данном разделе мы приведем достаточно общий математический формализм для описания эффектов как равновесного, так и нестационарного обмена в магнитном резонансе. В наиболее ранних исследованиях химического обмена рассматривались главным образом равновесные процессы. Здесь мы хотели бы выделить не столько традиционные вопросы, связанные с химическим обменом, сколько подчеркнуть изменения, необходимые для описания нестационарных явлений и химических реакций более высоких порядков. Сначала, в разд. 2.4.1, мы дадим обзор матричного формализма классической кинетики, с помощью которого можно описать реакции более высоких порядков. Затем, в раэд. 2.4.2, мы рассмотрим модифицированные уравнения Блоха для случаев нестационарных и равновесных химических реакций первого и более высоких порядков. Наконец, в разд. 2.4.3 развивается общий формализм на основе оператора плотности для описания сложных спиновых систем, участвующих в нестационарных химических реакциях произвольного порядка. [c.84]


    Как видно из изложенного материала, в литературе имеются сведения об образовании НВЧ при процессах разряда-ионизации металлов, однако практически отсутствуют работы, посвященные количественным закономерностям накопления НВЧ, систематические данные о зависимости их концентрации от потенциала и тока при поляризации электрода и какие-либо выводы о механизме электродных реакций, основанные на количественном рассмотрении этой зависимости не рассматривается также возможность определения кинетических параметров стадийных электродных реакций из таких зависи.мо-стей. Наконец, не выяснен полностью вопрос о критериях, позволяющих отличать НВЧ, являющиеся промежуточными продуктами стадийного процесса, от НВЧ, представляющих собой конечный продукт побочной электрохимической или химической реакции. Между тем, как будет показано ниже, в условиях, когда концентрация НВЧ доступна измерению, определение ее зависимости от потенциала и тока поляризации открывает новую возможность исследования кинетики и механизма сложных электрохимических реакций, сопровождающихся образованием НВЧ. Следует отметить, что изучение этой зависимости представляет и практический интерес, например, для выяснения закономерностей коррозии металлов путем окисления их НВЧ [22] и образования шлама при электролитической рафинировке металлов в растворах и расплавах, при использовании в аналитических целях анодного растворения металлических осадков в нестационарных условиях после их [c.70]

    В книге рассматриваются электродные процессы, протекающие с участием комплексов металлов в условиях равновесия и при наличии внешнего поляризующего тока. Описаны основные электрохимические методы, используемые при определении состава и констант устойчивости одноядерных комплексов металлов. Рассматривается кинетика электродных процессов, протекающих с участием комплексов металлов в условиях диффузионного контроля, при медленном протекании электрохимической стадии и при наличии медленных предшествующих химических реакций в растворе. Обсуждается механизм стадий разряда и ионизации, в которых участвуют комплексы металлов, а также влияние строения двойного электрического слоя на скорости реакций восстановления комплексов металлов. Одна из глав посвящена стационарным и нестационарным методам исследования кинетики электродных процессов. [c.2]


    В книге впервые дано изложение результатов систематического исследования математических моделей химических реакций, допускающих критические явления нетепловой природы в кинетической области (множественность стационарных состояний, гистерезисы стационарной скорости реакции, концентрационные автоколебания, медленные релаксации и т. п.). На основе концепции механизма реакции описаны общие подходы анализа нелинейных уравнений химической кинетики, отвечающих закрытым и открытым системам. Дана серия простейших типовых схем превращений, позволяющих интерпретировать критические явления и нестационарное поведение сложных (в том числе гетерогенных каталитических) реакций. Проведен анализ влияния различных макрокинетических факторов, флуктуаций и неидеальности на особенности проявления критических эффектов. Рассмотрены конкретные процессы гомогенного и гетерогенного окисления. [c.2]

    Наиболее полную информацию о кинетике ферментативных реакций дает изучение их протекания в нестационарном режиме (см. гл. V). Исследование стационарной кинетики ферментативных процессов имеет ограниченное значение для понимания многостадийного механизма действия ферментов. Это связано прежде всего с тем,что в общем случае невозможно однозначно приписать экспериментально определяемые значения констант скоростей индивидуальным химическим стадиям (см. 1 гл. V и VI). Тем не менее кинетические параметры типа = = У/(Е](,и Кт.каж, которые, следуют из основного уравнения стационарной кинетики — из уравнения Михаэлиса (6.8), как показал Альберти с сотр. [1], позволяют оценить нижний предел константы скорости любой индивидуальной стадии ферментативной реакции [типа (6.9) или даже более сложного обратимого процесса (5.16)]. [c.268]

    Термодинамические аспекты кинетики, рассматриваемые далее, касаются учета влияния обратной реакции, вопросов об адсорбционно-химических равновесиях в быстрых стадиях и их исследований. Поскольку кинетика процессов в идеальных и реальных адсорбированных слоях подробно обсуждалась в предыдущей монографии, здесь лишь кратко рассматривается современное состояние воззрений в этой области и работы последнего времени, особенно касающиеся нестационарных процессов. Так же коротко обсуждаются проблемы макрокинетики. Кинетические проблемы селективности здесь выделены в отдельное рассмотрение в свете появившихся недавно работ автора и других исследований. [c.6]

    В этом введении были кратко обсуждены вопросы, связанные с местом и ролью кинетики в гетерогенном катализе, этапами ее исторического развития и современным состоянием. Резюмируя, можно отметить, что в настоящее время дальнейшее успешное развитие теории и практики гетерогенного катализа невозможно без широкого использования кинетических исследований. Щля этого существенное значение имеет расширение теоретической базы химической кинетики в гетерогенном катализе, особенно касающееся понимания закономерностей сложных реакций, с описанием их как в стационарных, так и в нестационарных режимах. Кинетика гетерогенных каталитических реакций достигла того уровня, где всесторонняя разработка и решение, наряду с другими вопросами, проблем, связанных с нестационарными эффектами в катализе, представляются исключительно актуальными. [c.18]

    Исследования кинетики процессов, реализуемых в кипящем (псевдоожиженном) слое, целесообразно проводить в реакторах с виброкипящим слоем. Во-первых, это снимает ограничения в отношении нижнего предела размеров зерен катализатора, которые все же имеются в любых циркуляционных и перемешиваемых дифференциальных реакторах. Кроме того, что существенно, в реакторе с виброкипящим слоем, также как и в промышленных реакторах, частицы катализатора находятся в нестационарном состоянии. Наконец, при сохранении указанной идентичности в виброкипящем слое отсутствуют явления неоднородности — пузыри , приводящие к искажению феноменологической химической кинетики. Также существенно, что кипение слоя гарантирует его изотермичность практически для любых реакций. [c.195]

    Проблематика, связанная с качественным анализом и расчетом нестационарных и нелинейных кинетических моделей для сложных каталитических реакций, находится в состоянии быстрого развития. Можно констатировать, что актуальность исследований нестационарных явлений в химической кинетики, в том числе гетерогенной каталитической, объясняется следующими факторами  [c.22]

    Подведем некоторые итоги. Широкое развитие работ по критическим явлениям в химической кинетике является отчасти отражением того общенаучного интереса к нелинейным и нестационарным задачам, наблюдаемого во многих конкретных науках — от биологии до математики [26,31-33,40,51, 53,59,131,155,181,192,195,198,204,222,231,254,257,260,267,280,285,299,307, 312, 314, 323,337,339, 352,376, 386, 396,407,419,420,447,499, 500,513,518] Однако в химической кинетике наряду с использованием современных и традиционных методов нелинейного анализа определилась своя существенная специфика. Это концепция механизма реакции сложная реакция разбивается на ряд элементарных, свойства которых достаточно хорошо известны, и исследование процесса в целом осуществляется в результате его сборки из отдельных стадий. Представляется, что эта общая схема анализа и синтеза в химической кинетике пройдена наиболее осознанно и последовательно [c.236]


    Изучение ршстационарной кинетики началось недавно. Но уже сейчас можно видеть, как важен и широк ее объект, насколько реальнее она подходит к исследованию химических систем, организация которых сложна в том отношении, что она динамична, эволюционна. Углубление в сущность гетерогенно-каталитических реакций, познание их элементарных стадий, учет влияния распределения энергии по степеням свободы исходных веществ и продуктов реакции настоятельно требуют и новых методов исследования нестационарных систем и теоретических обобщений полученных результатов. [c.207]

    Посвящена исследованию процессов массо- и теплопереноса к поверхности реагирующих частиц, капель и пузырей, движущихся в жидкости или газе. Развиты эффективные приближенные аналитические методы решения соответствующих стационарных и нестационарных краевых задач нри больших и малых числах Пекле. Исследована зависимость массотеплообмена от формы частицы, гидродинамики потока и. кинетики химической реакции. Изучены вопросы конвективного массотеплообмена в упорядоченных системах частиц, капель и пузырей. Рассмотрены задачи о нестационарной диффузии к реагирующей поверхности в потоке. Приведены также простые инженерные формулы, пригодные для непосредственного практического использования. [c.2]

    Основные научные исследования относятся к химии редких металлов, Разработал теоретические основы и технологию разделения, а также прецизионной очистки циркония и гафния. Установил существование устойчивых многоядерных соединений циркония. Разработал новые методы изучения нестационарной массопередачи в процессах экстракции, обеспечивающие измерение констант скорости поверхностных реакций и определение механизма поверхностных явлений, Развил кинетику химических реакций извлечения и явлений, сопровождающих эти реакции на границе раздела фаз. В соавторстве с сотрудниками издал учебник Технология редких металлов в атомной технике (1974). Основал одну из научных школ по кинетнке экстракционных процессов, [c.602]

    Конечные продукты реакции, как правило, определяют путем проведения макроэлектролиза при контролируемом потенциале с последующим их выделением из раствора н анализом с помощью методов, обычно применяемых в органической химии (определение физических констант вещества, элементный анализ, ЯМР- и ИК-спектроскопия, масс-спектрометрия, хроматография и т. д.). Если эти продукты образуются в результате медленных химических превращений в объеме раствора, следующих за переносом электрона, то исследование кинетики таких химических стадий электрохимическими методами оказывается малоэффективным. Здесь более пригодны методы изучения химической кинетики в гомогенной фазе. Нечувствительность электрохимических методов эксперимента к достаточно медленным химическим превращениям в растворе является причиной того, что во многих случаях выводы о природе конечного продукта реакции, сделанные на основе данных препаративного электролиза и анализа поляризационных кривых, измеренных в стационарных или нестационарных условиях, оказываются различными, поскольку относятся к неодинаковым временным интервалам, охватывающим неодинаковое число стадий суммарного процесса. [c.195]

    Математический статус гипотезы квазистационарности нуждается в корректном исследовании. Эта задача была впервые сформулирована Ю. С. Са-ясовым и А. Б. Васильевой на основе теории дифференциальных уравнений с малым параметром [350]. Здесь важно, что является малым параметром и что определяет иерархию времен жизни различных веществ. Для гомогенной кинетики малым параметром обычно является отношение констант скоростей стадий. Именно для такого малого параметра В. М. Васильевым, А. И. Вольпертом и С. И. Худяевым был выделен класс уравнений химической кинетики, для которого применение гипотезы квазистационарности корректно [133]. В каталитических реакциях возможна другая причина квазистационарности. Здесь она может оказаться различием, прежде всего, не констант скоростей стадий, а числа активных центров катализатора и числа атомов вещества в газовой фазе. Иссл ювание корректности метода квазистационарных концентраций для систем с таким малым параметром балансового происхождения делалось в [441] только для конкретных кинетических моделей. В [436 выделены достаточно широкие классы кинетических моделей каталитических реакций с малым параметром балансового происхождения, для которых выполняется условия теоремы А. Н. Тихонова [134]. В полной системе может осуществляться квазистационарность наоборот , т. е. не промежуточные вещества подстраиваются под наблюдаемые, а наблюдаемые — под промежуточные. Такая ситуация может возникнуть в реакциях с дезактивацией катализатора [277], в системах с глубоким вакуумом. В простых случаях время выхода на квазистационарный режим может быть оценено [277]. Применение теории дифференциальных уравнений с малым параметром дает возможность глубже понять особенности нестационарного поведения сложной каталитической реакции. Прежде всего, вырожденная подсистема в общем случае может не совпадать с привычной системой уравнений квазистационарности по всем промежуточным веществам [436], о возможности частичной квазистационарности И. Н. Семенов писал в работе [354]. Развитие метода малого параметра на системы более общего вида дано в работах А. И. Вольперта и М. И. Лебедевой (см., например, [268]). [c.29]


Смотреть страницы где упоминается термин Исследование химических реакций с нестационарной кинетикой: [c.103]    [c.267]    [c.8]    [c.22]   
Смотреть главы в:

Построение математических моделей химико-технологических объектов -> Исследование химических реакций с нестационарной кинетикой




ПОИСК





Смотрите так же термины и статьи:

Исследование кинетики

Кинетика химическая

Кинетика химических реакций

Реакция исследование

Реакция с нестационарной кинетикой

Ток нестационарный



© 2025 chem21.info Реклама на сайте