Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Волны кинетические

    Распространение упругих волн в среде сопровождается распространением энергии волна как бы несет с собой сумму кинетической энергии колебательного движения частиц и потенциальной энергии упруго деформированной среды. [c.70]

    Фотосенсибилизация. Когда фотохимические реакции нельзя инициировать непосредственно светом, так как вещество не поглощает волн доступной длины, можно инициировать реакцию, используя вещества, способные поглощать свет и передавать энергию реагентам. Такой процесс известен как фотосенсибилизация очень эффективным сенсибилизатором является ртуть. Атомы ртути сильно поглощают излучение, соответствующее длинам волн 1849 и 2537 Л, которое легко получить с высокой интенсивностью в ртутных лампах. Полученные таким путем возбужденные атомы ртути могут передавать свою энергию и осуществлять сенсибилизированную реакцию (1 фотон при 2537 А равен 112 ккал/моль, а при 1849 А —154 ккал/моль). Таким путем можно получать атомы Н из Нг [71—74] и углеводородов [4] и зарождать цепные реакции при температурах, при которых обычное зарождение цепей невозможно. Подобные исследования дали очень важные сведения о кинетической природе радикалов. [c.101]


    Уравнение де Бройля удобно для предсказания результатов дифракции потоков микрочастиц, обладающих постоянной кинетической энергией, когда скорость частиц и, следовательно, и длина волны де Бройля Я постоянны. Однако в атомах и молекулах потенциальная (а следовательно, и кинетическая) энергия электронов зависит от расстояния между частицами и непосредственно использовать уравнение де Бройля в этих случаях нельзя требуется его обобщение, учитывающее указанное обстоятельство. Это было сделано квантовой механикой. [c.18]

    Энергия акустической (звуковой) -волны это добавочная энергия, обусловленная наличием этой волны. Энергия акустической волны в единице объема среды называется плотностью звуковой энергии. Она состоит из кинетической и потенциальной частей. Для плоской бегущей звуковой волны кинетическая и потенциальная части энергии равны и плотность полной энергии, выраженная через амплитуду давления Р, равна [c.14]

    Новым методом, при помощи которого можно определять даже следы некоторых ионов в растворах, является использование в полярографии кинетических волн. Кинетические волны возникают на полярограммах в тех случаях, когда в растворе присутствуют вещества, способные реагировать с продуктом восстановления на ртутном электроде. [c.467]

    Очевидно, что фронт движения жидкости в прорези пройдет расстояние ДА и остановится в тот момент, когда завершится переход кинетической энергии движения в потенциальную энергию упругого сжатия. Тогда объем жидкости ДУ = - ДА) будет обладать наибольшей потенциальной энергией, которая впоследствии перейдет в энергию ударной волны. [c.66]

    Чтобы фотон, ударяющийся о поверхность металла, мог выбить из него электрон, он должен обладать энергией, превышающей некоторый минимум. Эта минимальная, или пороговая, энергия называется работой выхода электрона из металла. Если падающий фотон имеет большую энергию, ее избыток превращается в кинетическую энергию выбитого фотона. Пороговая длина волны фотоэлектрической эмиссии из Li, выше которой фотоэффект не происходит, равна 5200 А. Вычислите скорость электронов, испускаемых литием при его облучении светом с длиной волны 3600 А. [c.381]

    Для выбора оптимального значения pH при постоянных концентрациях определяемого вещества и реагента изучают влияние pH на интенсивность окраски раствора при определенной длине волны, ориентируясь на область наибольшего поглощения в случае бесцветного реагента. Для окрашенных растворов оптимум соответствует наибольшему различию в поглощении аналитической формы и исходных реагентов. Наиболее благоприятная ситуация складывается тогда, когда небольшие изменения pH практически не влияют на светопоглощение раствора пои условии, что само поглощение по возможности максимально. С химической точки зрения влияние pH сказывается на ионном состоянии определяемого элемента или вещества и исходных реагентов, равновесии аналитической и побочной реакций, выходе и кинетической устойчивости аналитической формы. Постоянное значение pH в фотометрируемом растворе поддерживают соответствующими буферными растворами или достаточными количествами кислот или щелочей. [c.59]


    В ряде случаев сечения а, соответствующие превращению электронной энергии возбужденного атома в относительную кинетическую энергию сталкивающейся пары, оказываются очень малыми. Например, для дезактивации Ка (3 ) аргоном оценка верхнего значения а в условиях ударных волн составляет Ю - см [148]. Столь малые сечения дезактивации атомов щелочных металлов находятся в согласии с очень малыми величинами сечений возбуждения атомов вблизи порога возбуждения [148]. [c.103]

    Применение данного спектрального метода вызвано необходимостью структурного исследования кинетических элементов разрабатываемых нефтепродуктов, ядра которых соизмеримы с длиной волны света. [c.34]

    При распространении звуковых волн происходит перенос кинетической энергии, величина которой определяется интенсивностью звука /. В условиях свободного звукового поля, когда отсутствуют отраженные звуковые волны, интенсивность звука измеряется средним количеством звуковой энергии, проходящей в единицу времени через единицу поверхности, перпендикулярной к направлению распространения звука [c.98]

    СКИМ теплообменом между газовой струей и газом в полости. Газ внутри полости подвергается последовательному прохождению ударных волн и волн разрежения. Кроме того, процесс сопровождается излучением звуковых колебаний. Таким образом, в трубке Г-Ш кинетическая энергия расширяющейся струи преобразуется в тепловую энергию и энергию акустических колебаний газа, находящегося в полости трубки. [c.32]

    Общей и важнейшей чертой этих опытных фактов стало выявление для движения объектов малой массы (микрочастиц — электронов, протонов и т. п.) в малых пространственных областях удивительного сочетания свойств корпускул и волн. Например, для электронов характерно наличие типично волновых явлений, таких как интерференция и дифракция. В то же время кинетическая энергия и импульс р электрона связаны таким же соотношением, как и у частицы в классической механике  [c.10]

    Взрывом называется процесс очень быстрого выделения энергии, связанного с внезапным изменением состояния вещества, в результате чего в среде образуется ударная или взрывная волна. При ядерном взрыве совершается мгновенный переход внутриядерной энергии атомных ядер в кинетическую энергию их осколков. [c.358]

    Как показано в гл. 5, фактор трения / для пара, текущего в трубе, стенки которой покрыты пленкой жидкости, может быть на порядок выше, чем при течении однофазного потока. Это частично связано с ростом средней плотности газа, обусловленным уносом капель жидкости в ядро потока, а также с образованием волн на поверхности жидкой пленки, что вызывает турбулизацию потока пара. Кроме того, переход капель жидкости из пленки в ядро потока и обратно также приводит к уменьшению кинетической энергии газа. Факторы трения при течении газа в трубах со смоченными стенками показаны на рис. 5.15. Эти данные относятся как к течению при наличии конденсации или кипения, так и без них (например, для воздухо-водяных смесей). [c.246]

    Импульсное облучение кюветы проводится фильтрованным светом. Могут быть использованы следующие светофильтры для нафталина УФС-1 или УФС-2, а также комбинация фильтров УФС-2 и ЖС-З для фенантрена те же фильтры, что и для нафталина, или УФС-6 для антрацена УФС-1, УФС-2, УФС-6 или узкополосный фильтр для выделения ртутной линии 365 нм. Энергия вспышки выбирается такой, чтобы в максимуме спектра поглощения оптическая плотность не превышала 0,3. После получения кинетических кривых проводят их обработку (см. 5) и строят зависимость оптической плотности от длины волны, т. е. спектр триплет — триплетного поглощения. [c.191]

    Недостаток метода отбора проб заключается в его длительности н трудоемкости. Более удобно проводить реакцию непосредственно в кювете с записью спектра через определенные промежутки времени. Некоторые ИК-спектрометры можно точно установить на данную длину волны и записывать изменение во времени интенсивности полосы. Так как ИК-излучение от источника может довольно сильно нагреть вещество, необходимо при кинетических измерениях термостатировать кювету. При исследовании реакций в раство- [c.217]

    В предыдущем разделе было показано, что увеличение коэффициента интенсивности напряжений или С путем вынужденного расширения трещин способствует их росту с докритической скоростью (рис. 9.6 и 9.7). Так как сопротивление материала распространению трещины / растет с увеличением а, то новое равновесие между О и / может быть получено вслед за любым изменением Съ Однако если непрерывно возрастает в зависимости от /Сь то достигается точка нестабильного роста трещины. Нестабильность может характеризоваться тем, что в этой точке сопротивление материала Я а), согласно уравнению (9.13), недостаточно чувствительно к скорости, чтобы компенсировать рост Сх. Следовательно, ускорение роста трещины происходит до такого значения ее скорости, при котором следует учитывать силы инерции и конечную скорость Ve распространения упругих волн [67, 181 —182]. До тех пор вкладом в Я кинетической энергии отступающих поверхностей разрушения пренебрегают. В точке начала нестабильного роста трещины в ПММА со скоростью - 0,1 м/с вклад кинетической энергии равен 6 Дж/м . При таких скоростях этот вклад представляет незначительную часть средней плотности энергии деформации, [c.359]


    Особое значение имеют электродные процессы с промежуточной химической стадией, протекающей между двумя электрохимическими реакциями. Такие процессы символически обозначаются буквами ЕСЕ, показывающими последовательность протекания электрохимических (Е) и химической (С) реакций [2]. Если скорость химической стадии достаточно высока, то эта стадия никак не влияет на кинетику процесса в целом, однако при замедленной промежуточной химической реакции протекание электродного процесса в большей или меньшей мере ограничивается лишь первой электрохимической реакцией, поэтому среди образующихся продуктов содержатся по меньшей мере два вещества, отвечающих полному и частичному протеканию электродного процесса. В органической электрохимии такой промежуточной реакцией чаще всего является реакция протонизации первично возникающего продукта — обычно анион-радикала или свободного радикала последний образуется при переносе электрона на катионную (обычно протонировапную) форму деполяризатора. На полярограммах, отвечающих таким процессам в апротонной среде, первая волна, как правило, соответствует переносу одного электрона, последующие волны — дальнейшему восстановлению образовавшегося на первой стадии продукта. При введении же в такой раствор доноров протонов высота первой волны обычно возрастает вследствие появления кинетической составляющей тока, обусловленного дальнейшим восстановлением протонированного первичного продукта (см., например, [3—5]). Величина этого дополнительного (по сравнению с уровнем диффузионной одноэлектронной волны) кинетического тока определяется скоростью протонизации первичного продукта с увеличением концентрации или силы доноров протонов высота кинетического тока возрастает. [c.139]

    На полярограмме нейтрального небуферного раствора цикло-центадиенилида пиридиния наблюдается анодная диффузионная волна, соответствующая переносу одного электрона, и две катодные волны — кинетическая и диффузионная, сумма высот которых равна высоте анодной волны. При подкислении раствора анодная волна исчезает одновременно возникает новая катодная волна, расположенная на 0,7 в положительнее волны в нейтральной среде. [c.152]

    Диоксимы (а также монооксимы) бензо-, нафто- и антрахинона исследовали Элофсон и Аткинсон [97], которые наблюдали в кислых и щелочных растворах одну волну, а в нейтральной — две, причем меньшая волна кинетического характера объяснена нитрон-оксимной изомеризацией на электроде  [c.53]

    Соотношение (2.2) можно переписать в виде /ф = 2а + 1, где — длина дуги, которую пробегает ротор в запертом состоянии. Здесь эта величина назьшается дугой преобразования энергии. Величина этой дуги должна выбираться по некоторым правилам, которые определяются исходя из следующих соображений. При резком перекрытии проходного сечения канала движения потока сплошной среды, согласно теории прямого гидравлического удара Жуковского [391], происходит преобразование кинетической энергии некоторого объема жидкости в потоке в потенциальную энергию упругой деформации этого объема. После завершения этого преобразования начинается процесс релаксации в форме распространения в жидкости ударной волны. Применение этой концепции к единичной прорези ротора дает следующий вьтод длина дуги преобразования должна бьтгь не меньше длины углового расстояния, проходимого ротором, на протяжении которого будет завершен цикл преобразования кинетической энергии объема жидкости, равного объему прорези ротора, в потенциальную энергию упругого сжатия этого объема при перекрытии этой прорези телом статора. Время, в течение которого такое преобразование происходит, назовем временем подготовки прорези к излучению. [c.65]

    Неизбежность отставания механического ударного фронта и химической реакционной зоны вытекает из кинетических положений. В стационарной ударной волне, движущейся через газ со сверхзвуковой скоростью (у 10 — 10 см сек), градиент плотности через ударный фронт ограничивается диффузией. Диффузионный поток вещества через ударный фронт толщиной бд равен Бд дх ОАд 8в, где О — средний коэффициент диффузии в ударном фронте, а Ар — изменение плотности. В стационарном состоянии он должен быть равен потоку массыр г и внутрь ударной волны. Таким образом, решая уравнение относительно б , получаем [c.405]

    Явление ударных волн в газах было впервые открыто в 1860 г. Риманом и количественно проанализировано Чепменом[61], Жуге [62] и затем с кинетической точки зрения Беккером [63], который предложил очень наглядную модель образования ударных волн. [c.406]

    Оба эти механизма описываются одинаковым кинетическим уравнением только до тех пор, пока диссоциация Ij находится в состоянии термического равновесия и число имеющихся в наличии атомов иода определяется термической константой равновесия согласно уравнению (22-23). При более высоких температурах диссоциация усиливается, и это дает такой же результат, как и повыщение константы скорости бимолекулярной реакции. Дж. Салливэн рещил проверить обе теории, изменяя концентрацию атомов иода по сравнению с нормальной, соответствующей термической диссоциации Ij. Он осуществил это при помощи ртутной лампы, пары которой излучают свет с длиной волны 578 нм, вызывающий диссоциацию Ij. Этот свет не должен оказывать на реакцию заметного влияния, если она протекает по бимолекулярному механизму, лишь несколько понижая концентрацию Ij. Но если реакция действительно вклкэчает стадию тримолекулярных столкновений с атомами иода, скорость реакции должна возрастать с интенсивностью облучающего света, поскольку при этом образуется больше атомов иода. [c.381]

    Чрезвычайно показательно, что кинетическая модель реакции и описанное поведение системы в области атмосферных давлений и температур 1000 К в реальных условиях в значительной мере определяет гидродинамический механизм воспламенения и горения газа в детонационных волнах. Многочисленные экспериментальные наблюдения и теоретический анализ течения газа в зоне химической реакции, инициируемой нагревом газа за ударным фронтом плоской детонационной волны, показывают, что одномерная и стационарная схема течения в такой зоне неустойчива. На практике реализуется локально нестационарная и многофронтовая модель детонационного горения 1119, 1521, в которой термическое состояние ударно нагретого газа варьируется в достаточно широких пределах — от 900 до 3000 К вместо 1800 К, характерных для стационарной детонационной волны Чепмена — Жуге. Это изменение температуры обычно представляется в виде непрерывного распределения вдоль искривленного [c.305]

    Таким образом, предельные кинетические явления становятся определяющим фактором в осуществлении в реальных условиях многофронтовой физико-химической модели детонационного горения — явления, достоверность и универсальность которого сейчас уже не вызывает никаких сомнений. Интересно отметить, что и в условиях воспламенения за фронтом детонационных волн определенную роль может играть также изменение условий в газе перед включением процесса. Было замечено, что, как [c.306]

    Во-вторых, Toj bKo исследование кинетической схемы в рамках микроскопического онисания позволяет понять многие практически важные процессы в ударных волнах, пламенах, атмосфере и низкотемпературной плазме, а таки е процессы в лазерах или индуцированные лазерным излучением. В рамках этого подхода задача формулируется не как определение неравновесных концентраций реагентов, а как определение неравновесных функций распределения реагентов по состояниям, формирующихся в результате конкурирующих элементарных нроцессов химического превращения и передачи энергии. [c.3]

    Эта идея Семенова получила экспериментальное подтверждение в исследованиях Борисова, Когарко и Скачкова [141. Изучая воспламенение смесей На—С1з за отраженными ударными волнами и в статистической установке перепускного типа, они показали, что экспериментально измеренные периоды индукции внрыпа удается количественно согласовать с теоретически рассчитанными в< личивами лишь при условии включения в кинетический механизм процесс,а гипотетической стадии энергетического разветвления ИС1 + С1а = Н(Л Ч С1 + С1 (при Т = 550- 1300 К). Результаты работы [141 были подтверждены недавно в аналогичных опытах Лифшица и Шехпера [3801 для температу]шого интервала Т = 830- 1250 К. [c.223]

    В настоящее время используются в основном два типа установок импульсного фотолиза — кинетическая и спектрографическая, которые различаются способом регистрации. Кинетическая установка позволяет получать непосредственио кинетическую кривую гибели промежуточного продукта на одной длине волны возбуждения. При помощи спектрографической установки регистрируется весь спектр промежуточных продуктов через определенный промежуток времени после фотолитической вспышки. Кроме наиболее распространенных спектральных методов регистрации используются также другие, например при образовании короткоживущих ионов измеряется кинетика электропроводности. [c.156]

    Изложенная классическая теория детонации была создана Зельдовичем 144, 45, 47] в 1940 г. (см. также работы [36, 255, 432]) на основе одномерной модели устойчивой детонационной волны. Позднейшие исследования показали (литературу см. в обзоре Стрелова [539]), что действительная газокинетическая и химико-кинетическая картина детонационной волны гораздо сложнее той идеализированной картины плоской ударной волны и плоского фронта химической реакции, которая слодует из классической теории и которая к тому же оказывается неустойчивой, что приводит к изломам и искривлениям волнового фронта и связанным с этим нарушениям идеальной картины детонационных волн. [c.242]

    Кристоферсон привлек внимание к явлению "откола", происходящему в бетоне, и утверждал, что более половины достигаемого проникания - результат этого явления. В момент соударения осколка о переднюю поверхность бетонной плиты в ней возникает ударная волна, которая распространяется в направлении задней поверхности плшы и движется впереди осколка. Это может способствовать возникновению воронки, из которой в обратном направлении с силой выбрасываются обломки бетона. Если осколок обладает достаточной кинетической энергией, передняя и задняя воронки соединяются и в точке соударения осколка с плитой не возникает дальнейшего сопротивления перемещению осколка, хотя оно и будет замедлено. С точки зрения военных, раскалывающуюся плиту необходимо укрепить, для чего устанавливается стальная плита у задней поверхности бетонной плиты хотя это и не способствует предотвращению скалывания, однако может препятствовать выбросу обломков бетона. Реализация такой защиты откалывающихся стен операторных зданий представляется сомнительной с учетом стоимости подобной конструкции. [c.536]

    Численный и качественный анализы математического описания нестационарного процесса в слое позволили установить, как влияют кинетические и теплофизпческие факторы на максимальную температуру и скорость движения тепловой волны. При малых адиабатических разогревах смеси область параметров, при которых реализуются аффективные высокотемпературные режимы, сужается. Так, при низких разогревах оказывается необходимым обеспечить либо высокие линейные скорости смеси, либо значительные времена [c.169]

    Если концентрация поглощающего вещества будет велика, т. е. будет выполняться условие еС/3>1, то падающий свет будет поглощаться полностью и /погл=/о- При ЭТОМ фотохимическая реакция будет подчиняться формально нулевому порядку и зависимость количества прореагировавщих молекул от времени будет выражаться прямой линией. Если же концентрация поглощающего вещества невелика, т. е. еС , то /погл = /оеС/ и реакция будет подчиняться кинетическому закону первого порядка. В некоторых фотохимических реакциях поглощение света данной длины волны происходит несколькими реагентами  [c.135]

    Триплет — триплетная аннигиляция. Триплет — триплетная аннигиляция наблюдается при увеличении концентрации триплетных молекул. Явление триплет — триплетной аднигиляции наблюдается для антрацена при увеличении его концентрации или увеличении энергии вспыш ки. Осциллограмма гибели триплетов антрацена снимается на длине волны 425 нм. Кинетическая обработка данных проводится методом графн>ческого дифференцирования. Строится зависимость Ig от AD, из которой находится константа первого порядка k и отношение /гг/е. Принимая во зннмание значение е = 6,3-10 , определяется 2- Константы к и 2 могут быть также определены методом численного интегрирования [c.193]

    Постоянство оптической плотности раствора реакционной смеси на какой-то длине волиы свидетельствует о том, что концентрация вещества, поглощение которого на данной длине волны значительно больше, чем поглощение других комиоиентов реакционной смеси, остается постоянной в течение опыта. Современные двухволновые спектрофотометры открывают широкие возможности в химической кинетике. Использование их позволяет фиксировать не оптическую плотность иа одной длине вол Ны, а разность оптических плотностей на двух длинах волн. Эти длины волн могут быть выбраны таким образом, что вклад остальных компонентов в поглощение будет пренебрежимо мал и вся регистрируемая разность оптических илотиостей может быть отнесена к исследуемому компоненту. Если поддерживать постоянной концентрацию поглощающего вещества в условиях, когда остальные компоненты реакционной смеси находятся в избытке, то реакция будет протекать с постоянной скоростью, т. е. кинетическая кривая в координатах расход титраита (поглощающего реагента) — время будет представлять собой прямую с тангенсом угла наклона, равным начальной скорости реакции при выбранной копцентрации вещества. Возможность растянуть таким образом начальный период реакции позволяет с большей точностью измерить ее начальную скорость, а следовательно, и константу скорости реакции. Это особенно важно при изу-чении ферментативных процессов. Пусть в системе осуществляется реакция по уравнению [c.283]

    Явление детонации заключается в том, что при зажигании смеси бензин-воздух запальной свечей ударная волна распространяется быстрее, че.м собственно взрывная волна. Вызванное этим самовоспла.мененне приводит к несинхронным взрывным процессам, вследствие чего в моторе возникают вибрации ( стук ). Связанная с эти.ч потеря кинетической энергии тем больше, чем сильнее сжатие. В то же время высокое сжатие необходимо для более полного использования энергии топлива. [c.86]


Библиография для Волны кинетические: [c.648]    [c.512]   
Смотреть страницы где упоминается термин Волны кинетические: [c.26]    [c.467]    [c.218]    [c.267]    [c.64]    [c.51]    [c.218]    [c.35]    [c.157]    [c.195]    [c.196]    [c.350]   
Физико-химические методы анализа Изд4 (1964) -- [ c.467 ]

Физико-химические методы анализа Издание 4 (1964) -- [ c.467 ]




ПОИСК







© 2025 chem21.info Реклама на сайте