Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Селекторы хиральные

    Добавка второго хирального селектора, В этом методе в буферной системе находятся два различных хиральных селектора. Однако этот способ до настоящего времени только в отдельных случаях приводил к улучшению разрешения при разделении энантиомеров. Например, комбинация хирального краун-эфира с ЦД для некоторых проб проявляет синергический эффект. Иногда к улучшению селективности приводит также использование двух различных ЦД в одной буферной системе. Однако, в общем случае введение второго селектора и, таким образом, второй равновесной системы в буфер приводит к потере селективности. [c.90]


    Поскольку в настоящее время ЦД и их производные обладают наиболее широким спектром применения в качестве хиральных селекторов, а также наибольшими перспективами в КЭ, остановимся на них более подробно. [c.90]

    Реакции, в результате которых получаются производные ЦД, позволяют проводить синтез множества новых хиральных селекторов с существенно разным воздействием на хиральные различия между селектором и анализируемым веществом. В общем случае за хиральные отличительные свойства отвечают гидрофобные и ионные взаимодействия, а также стерические эффекты и образование мостиковых водородных связей. [c.90]

    Как правило, проблемой в разделении энантиомеров является невысокая селективность и, вследствие этого, длительные времена анализов, даже в случае, когда найдем подходящий хиральный селектор для разделения. Причиной этого являются небольшие различия в подвижностях - и 1-форм анализируемых веществ, а также наличие сильного ЭОП, который перекрывает эффект разделения в немодифицированных капиллярах. Небольшие различия в подвижностях приводят к разделению только в тех случаях, когда эффективные участки движения максимальны. Это означает, что анализируемое вещество в электрическом поле должно двигаться от точки ввода до детектора самостоятельно. Наличие ЭОП в данном случае мешает разрешению. Для достижения максимального разрешения по возможности за короткое время покрытые (модифицированные) капилляры используются при сильно заторможенном ЭОП. При этом можно использовать очень короткие капилляры (7-20 см) и сильные электрические поля (до 1000 В/см). При использовании подходящего хирального селектора это приводит к очень малым временам анализа при высоком разрешении. Различие между немодифицированным и покрытым капилляром продемонстрировано на рис. 84. [c.91]

    Заметно более высокая эффективность для непокрытого капилляра основана на том, что ЭОП перекрывает подвижность анализируемых веществ, и они очень быстро проходят через детектор. Здесь ясно видно, что более высокая производительность за более короткое время при разделении достигается при применении покрытого капилляра. Использование покрытого капилляра в выборе подходящего хирального селектора играет большую роль, так как в данном случае можно много быстрее определить применимость данного селектора, т.е. его селективность. [c.91]

    При использовании ЦД в качестве хиральных селекторов решающее влияние на селективность оказывает не только тип ЦД, но и тип заместителя в производных ЦД. Растворимость ЦД в воде также может резко увеличиться при применении производных. Это показано для тестовой смеси различных типов ЦД и их производных на рис. 85. [c.91]


    В немодифицированной с помощью ЦД буферной системе отрицательно заряженные энантиомеры обладают высокой подвижностью относительно ЭОП, так как они без сопротивления могут проходить сквозь буфер (нижняя электрофореграмма).. Уже небольшие добавки хирального селектора вызывают сильное уменьшение подвижности анализируемых веществ, причем в этом случае наблюдается вполне Достаточная селективность. Разделение при очень низких концентрациях ЦД объясняется различным временем пребывания - и 1-форм в ЦД. Энантиомер с большим временем пребывания в ЦД проявляет меньшую подвижность и детектируется ближе к ЭОП. [c.92]

    Дальнейший рост концентрации хирального селектора может резко ограничить подвижность анализируемых веществ, так что они Детектируются очень близко к ЭОП. В этом случае из-за слишком малой зоны движения разделение энантиомеров может стать невозможным. Кроме того, при повышении концентрации ЦД растет вязкость буфера, что замедляет ЭОП и увеличивает время анализов. В капиллярах с заторможенным ЭОП рост концентрации ЦД также приводит к уменьшению подвижности анализируемых веществ, повышению вязкости буферной системы и, вследствие этого, к увеличению времени анализов. [c.92]

    Наряду с уменьшением разрешения вследствие небольшого времени пребывания в капилляре при высоких концентрациях ЦД могут наблюдаться также и другие эффекты. В некоторых случаях оказывается, что уже при очень низких концентрациях ЦД наблюдается хорошее разделение пар энантиомеров (разрешение больше 1.5). Однако, при более высоких концентрациях хирального селектора (об. 4-10 %) разрешение снова падает. При более высоких концентрациях ЦД время пребывания - и 1-форм анализируемых веществ в ЦД увеличивается, однако разность этих времен постоянно уменьшается. [c.92]

    При очень низких концентрациях хирального селектора в системе достигается хорошая селективность. Если повысить концентрацию, разрешение полностью исчезает и снова появляется при очень высоких концентрациях ЦД. Это показано на рис. 88, где представлены зависимости относительных времен миграции от концентрации ЦД. [c.92]

    После выбора подходящего хирального селектора и оптимального значения pH следует оптимизировать также ионный состав разделяющего буфера. Как показано на рис. 90, подвижность буферных ионов влияет на форму пика и разрешение анализируемых веществ. [c.94]

    Наряду с уже описанными параметрами определяющее влияние на разделительную способность хирального селектора могут оказывать многие добавки к разделяющему буферу. Однако заранее невозможно предсказать, может ли добавка таких компонентов, как органические растворители, комплексообразующие средства, детергенты и т.д., привести к улучшению или исчезновению разделения. [c.95]

    Разность подвижностей и, соответственно, селективность зависят концентрации ЦД, констант равновесия между анализируемыми хиральным селектором и разности подвижностей в комплексном и состояниях анализируемых веществ. Из вышесказанного следует, что при постоянной концентрации ЦД добавка органического компонента к буферу может изменить константу равновесия в положительную (улучшение разрешения) или отрицательную (потеря разрешения) сторону. Характер изменения зависит в основном от концентрации [c.95]

    Рнс. 5.2. Принципиальная схема хирального лигандного обмена, используемого для хроматографического разделения оптических изомеров при взаимодействии хирального селектора (слева) и соответствующих энантиомеров (справа) происходит обратимое образование диастереомерных комплексов металлов. [c.75]

    Этот особый механизм взаимодействия требует наличия у взаимодействующих соединений тг-электронных систем. Ароматические системы, выступающие и как донорная, и как акцепторная компонента, часто образуют стабильные КПЗ. Такие ароматические тг—7г-взаимодействия совместно с дополнительными полярными взаимодействиями (водородные связи, диполь-дипольные взаимодействия) обеспечивают весьма высокую активность хиральных лигандов селекторов, используемых в ЖХ. [c.76]

    Рнс. 5.3. Модель, используемая для объяснения энантиоселективности хиральных селекторов, образующих комплексы с переносом заряда [7 (с разрещения изд-ва). [c.77]

    У хроматографических неподвижных фаз этого типа хорошо известна молекулярная структура низкомолекулярного фрагмента, закрепленного на некотором твердом носителе, обычно силикагеле. Эти низкомолекулярные хиральные соединения, называемые в данном тексте селекторами, часто выбираются на вполне рациональной основе, поскольку их энантиоселективные свойства во многих случаях могут быть установлены при изучение ЯМР-спектров их растворов. Это также означает, что порядок элюирования из колонки, заполненной сорбентом с таким селектором, часто можно предсказать, основываясь на механизме хирального распознавания. [c.140]

    Для хиральных селекторов, описанных в этом разделе, характерен существенный вклад ароматического 1г—1г-связывания в процесс удерживания сорбата. Взаимодействия такого типа хорошо изучены, они происходят между так называемыми тг-донорными и тг-акцепторными молекулами, тг-Доноры имеют тенденцию к отдаче электрона, поскольку образующийся положительный заряд хоро- [c.146]

    Схема 7.9. Синтетический метод закрепления тг-донорного хирального селектора. [c.150]

    ХИРАЛЬНЫЕ СЕЛЕКТОРЫ, РАБОТАЮЩИЕ ПО ПРИНЦИПУ ОБРАЗОВАНИЯ ВОДОРОДНЫХ СВЯЗЕЙ [c.153]


    Схема 7,11, Метод закрепления хирального селектора, способною образовывать водородные связи. [c.154]

    Механизм хирального распознавания энантиомеров на связанных с матрицей хиральных селекторах, описанных в разд. [c.155]

    Схема 7.12. Амидные и мочевинные хиральные селекторы, разработанные Ои. [c.156]

    Этот сорбент вполне отвечает требуемой механической стабильности и обладает приемлемой емкостью. Он достаточно прочно удерживает хиральный модификатор, пока полярность подвижной фазы не повышается слишком сильно (что вызывает вымывание селектора). [c.232]

    Другой положительной особенностью данной системы является возможность иммобилизации на той же самой основной матрице ряда других Ы-замещенных аминокислот в качестве хиральных лигандов, что позволяет оптимизировать данную систему. Например, селектор ДНБ-лейцин, как выяснилось, во многих случаях дает лучшие результаты (см. разд. 7.2.3). [c.232]

    МЕТОДЫ ЗАКРЕПЛЕНИЯ ХИРАЛЬНОГО СЕЛЕКТОРА НА СИЛИКАГЕЛЕВОЙ МАТРИЦЕ [c.249]

    Поэтому при разделении эмантиомеров основное внимание следует уделять выбору подходящей оптически активной среды - так называемого хиральмого селектора (см. таблицу 27). Поскольку универсальных хиральных селекторов не существует и проблемы разделения каждый раз необходимо оптимизировать по-новому, основная задача разделения эмантиомеров заключается в выборе подходящего селектора. [c.89]

    В КЭ оптически активная среда обычно создается добавками оптически активных веществ к разделяющему буферу. Этот простой способ обладает большим преимуществом, поскольку в этом случае отпадает необходимость в длительных и требующих интенсивной работы стадиях иммобилизации хиральмых селекторов на различных носителях. Поиск хирального селектора происходит, как и в ВЭЖХ, методом "проб и ошибок". Основным недостатком КЭ в разделении эмантиомеров является чисто аналитическая направленность. Для решения препаративных задач метод малопригоден. [c.89]

    Вышеназванные хиральмые селекторы часто применяются не сами по себе, а вместе с другими буферными добавками. Используются в основном такие мицеллообразователи, как ДДСН, который наряду с хиральным селектором образует вторую разделяющую систему. Ниже приводится краткий анализ некоторых таких комбинаций. [c.90]

    ДДСН-ЦД. Из смешанных методов этот вариант наиболее распространен. Мицеллярная система в данном случае отвечает за разделение отдельных компонентов пробы, а ЦД в качестве хирального селектора - за разделение компонентов пробы в чистых онантиомерах. Однако, при применении детергентов вместе с ЦД часто наблюдается их отрицательное влияние. Детергенты с длинными алкановыми цепочками могут внедряться внутрь ЦД-колец и препятствовать воздействию хирального селектора. [c.90]

    Было показано, что при разделении энантиомеров важную роль наряду с выбором подходящего хирального селектора играют и другие параметры электрофоретической системы, которые требуют дальнейшей оптимизации. Например, на процесс оптимизации разделения энантиомеров решающее влияние оказывает величина pH. Вследствие того, что разделение энантиомеров методом КЭ основано на различии в подвижностях между - и 1-формами, анализируемые вещества необходимо перевести в ионную форму, что обеспечивается подходящим значением pH. При электрофоретическом движении анализируемых веществ через "квазистациомарную" фазу (в данном случае - ЦД) происходит разделение пары энантиомеров. Важнейшими оптимизирующими параметрами в данном случае являются концентрация хирального селектора в используемой буферной системе, сама буферная система (вид фонового электролита), а также другие буферные добавки, такие как ДДСН, метанол и др. Их [c.90]

    С ПОМОЩЬЮ добавки раствора 7 М мочевины можно поднять концентрацию ЦД (случай О). Однако, в данном случае время анализов заметно растет вследствие увеличения вязкости буфера и низкой подвижности анализируемых веществ, обусловленной высокой концентрацией хирального селектора. При этом улучшения разрешения не наблюдается. В данном случае положительное влияние оказывает добавка метанола (Е). Время миграции при этом несколько возрастает, однако достигается лучшее разрешение. Если использовать буфер, соответствующий случаю , вместе с 0.1 М ДДСН, время миграции резко уменьшается (случай В). Это объясняется тем, что в данных условиях ДДСН и анализируемые вещества движутся в одном направлении (оба анионные), тем самым создается синергический эффект. Разрешение по сравнению со случаем (О) резко улучшается, а время анализов уменьшается. И в этом случае добавка метанола в буферную систему приводит к увеличению времени анализов, однако улучшения разрешения не наблюдается (случай С). В рассматриваемых здесь случаях улучшение разрешения определяется в основном более высокой эффективностью конкретной разделяющей среды. Значения а в этих примерах практически не изменяются. [c.96]

    Циклические аминокислоты, подобные L-пролину или l-ok сипролину, вместе с ионами меди(П), образуют хиральные селекторы обладающие наибольшей энантиоселективностью. [c.143]

    Интенсивные исследования в области ХЛОХ, проводимые с 1970 г., привели к синтезу большого числа сорбентов на базе различных матриц (полистирол, полиакриламид, полиметилметакрилат, силикагель) и различных хиральных селекторов (из которых наибольшее распространение нашли закрепленные через атом азота ь-Рго, L-flллo-HO-Pro и ь-НО-Рго). Перечень этих сорбентов дан в табл. 7.9. [c.145]

    Разработаны и подробно исследованы методы нековалентной иммобилизации комплексов аминокислот с металлами, обусловленной гидрофобными взаимодействиями с обращенно-фазовым сили-кагелевым сорбентом (алкилсиликагелем). И хотя некоторые из этих методов не требуют добавления хирального селектора в подвижную фазу [130], их следует рассматривать как пограничные по причине их сходства с другими методами, основанными на сочетании обращенно-фазовых нехиральных колонок и подвижных фаз, содержащих хиральные добавки, и мы их рассмотрим в разд. 7.3. [c.146]

    Поскольку такой хиральный сорбент продемонстрировал прекрасные разделяющие свойства по отнощению к 3,5-динитро-бензоильным производным рацемических соединений, подобных аминокислотам, применение принципа обратимости (означающего, что если оптически активное соединение А разделяет энантиомеры В, то оптически активное соединение В должно разделять энантиомеры А) привело к синтезу (Я)-Ы-(3,5-динитробензоил)фе-нилглицина в качестве хирального селектора тг-кислотного типа. Обычно его удобно использовать в сочетании с 3-амино-пропилсиликагелем, элюентом при этом служит смесь пропанол-2(0—20%)—гексан. Исследование разделения различных замещенных антраниловых спиртов на этих ХНФ в очень большой степени способствовало пониманию механизма хирального распознавания при энантиоселективной адсорбции, что позволило во многих случаях достигнуть высоких значений а [146]. [c.149]

    Последующее использование правила обратимости привело к созданию ряда новых хиральных селекторов, связанных с носителем и работающих по принципу тг-доноров, таких, как ХНФ на основе гидантоинов [156], арилалкиламинов [157—162] и фталимидов [163]. В обзоре [164] рассмотрены принципы обратимости и значение конкурентности (в противоположном смысле) в процессах хирального распознавания. [c.153]

    Перенеся используемый в газовой хроматографии принцип разделения энантиомеров на хиральных амидных неподвижных фазах, а именно принцип, многоточечного образования водородных связей, на жидкостную хроматографию Хара и соавт. [165—167] синтезировали серию хиральных селекторов для разделения энантиомеров. Они предположили, что образование водородных связей с жидкой неподвижной фазой в хиральной ГХ по методу Чарл а и др. [168] (см. разд. 6.1.1) можно реализовать и в ЖХ, если применить неполярную подвижную фазу. Предложенный принцип разделения через образование диастереомерных комплексов сорбат—лиганд, включающих две водородные связи, показан на рис. 7.16. [c.153]

    Число возможных водородных связей заметно возрастает при переходе к селектору на основе винной килоты. В этом случае, кроме того, наблюдается еще и большая конформационная подвиж-нось, которая придает структуре большую изменчивость, что допускает ассоциацию с широким кругом соединений и, следовательно, более широкую энантиоселективность. Поскольку (к, К)-ДИПАВК был с успехом использован в качестве хиральной добавки в подвижную фазу (см, разд. 7.3), был синтезирован иммобилизованный селектор такого же типа, структурно совершенно аналогичный (К, к)-ДИПАВК. [c.155]

    В соответствии с этим принципиального различия между описанными выше методами и теми методами, которые рассматриваются в этом разделе, не существует. Так, фаза Пиркла, связанная ионной связью с носителем (см. разд. 7.2.3), является превосходной ХНФ, если она используется в сочетании с неполярными растворителями, так как в этом случае подвижная фаза проявляет очень небольшую тенденцию к вытеснению хирального селектора с сорбционных центров. В этих условиях добавки хирального селектора к подвижной фазе не являются обязательными. Если же селектор закреплен на алкилсиликагеле или другой гидрофобной матрице, вследствие наличия сильных гидрофобных взаимодействий ситуация может быть вполне аналогичной, но все же необходимость сохранения постоянной степени покрытия матрицы обычно требует присутствия селектора в подвижной фазе. [c.157]

    Многие из уже описанных принципов образования ковалентносвязанных хиральных фаз можно реализовать путем добавления хирального селектора в подвижную фазу. Все системы такого типа можно разделить на три группы системы, в которых происходит образование комплексов металлов (ХЛОХ), системы с добавками различных незаряженных соединений и, наконец, ион-парные системы, предназначенные для разделения заряженных соединений. [c.157]


Смотреть страницы где упоминается термин Селекторы хиральные: [c.37]    [c.89]    [c.90]    [c.107]    [c.155]    [c.239]    [c.252]   
Хроматографическое разделение энантиомеров (1991) -- [ c.140 , c.146 , c.155 , c.160 ]




ПОИСК





Смотрите так же термины и статьи:

Хиральность



© 2025 chem21.info Реклама на сайте