Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Тема 1. Методы очистки веществ

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Специальная подготовка сырья для установок каталитического крекинга является исключительно важной. Наиболее дешевым и распространенным способом такой подготовки является тщательная перегонка нефти при получении дистиллятов, предназначенных для переработки в процессе каталитического крекинга. Нельзя ограничиваться однократным испарением, а необходимо использовать методы современной ректификации. Однако даже квалифицированные методы ректификации не могут обеспечить получение качественного сырья, особенно из нефтей с повышенным содержанием азотистых соединений, смолистых веществ и металлов. Часто для повышения экономичности процесса каталитического крекинга приходится применять различные физические и химические методы облагораживания сырья. Из них наиболее универсальным способом является гидрогенизационная очистка она пригодна и для очистки сырья, и для облагораживания циркулирующего газойля. Этот метод позволяет глубоко очищать от вредных компонентов любые, даже наиболее неквалифицированные виды сырья. К сожалению, гидроочистка является относительно дорогостоящим методом, поскольку требуется значительное количество дефицитного водорода. Тем не менее его применение для очистки некачественных видов сырья каталитического крекинга экономически вполне приемлемо. При подготовке сырья, содержащего немного нежелательных компонентов, можно наряду с гидроочисткой применять описанные выше другие, более дешевые методы очистки. [c.211]

    Поверхностно-активные вещества неблагоприятно влияют, а миогда делают невозможной очистку сточных вод общепринятыми методами. Так, сточные воды, содержащие соли нефтяных сульфокислот, неионогенпые поверхностно-активные вещества и др. нельзя очистить биохимическим методом. Это связано с тем, что поверхностно-активные вещества являются ядами для биоценоза, практически не окисляются, снижают соотношение биологической потребности кислорода и окисляемости, замедляют рост активного ила и тормозят процесс нитрификации, вызывают образование обильной устойчивой пены.. 4эротенки могут работать в устойчивом режиме при содержании ОП-7, ОП-10, алкнларилсульфатов и сульфонатов ие более 10 мг/л. Очистка жидких отходов упариванием также затруднена в присутствии ПАВ из-за обильного пенообразования, что затрудняет работу дистилляционных установок, а при переходе пены в конденсат приводит к уносу загрязнений. Эффективность этого метода очистки увеличивается в 100 и более раз после предварительного удаления ПАВ. [c.209]


    Методы, применяемые для глубокой очистки веществ, разнообразны. Выбор метода определяется свойствами очищаемого вещества и природой отделяемых примесей.. Хотя теоретически можно оценить возможности методов, тем не менее в большинстве случаев приходится проводить специальные исследования, дающие возможность выбрать оптимальный метод или найти метод, позволяющий достигнуть требуемой степени чистоты. [c.9]

    Выпадение вещества из раствора при понижении температуры называется кристаллизацией. В результате кристаллизации получается более чистое вещество, даже если в растворе и содержатся примеси. Это связано с тем, что примеси не выпадают в осадок, так как раствор по отношению к ним не является насыщенным. На этом основан метод очистки вещества, называемый перекристаллизацией. [c.8]

    Наиболее благоприятны для очистки диаграммы состояний с эвтектиками и с очень узкой областью гомогенности твердых растворов примеси в основном веществе, например индия в германии (как на рис. 52). Чем меньше единицы коэффициент распределения /(=Ств/Сж, тем лучше. Гораздо менее благоприятные условия создаются, когда примесь образует непрерывный ряд твердых растворов с основным веществом (как на рис. 6). Для примесей первого рода К=Стп/С-д,>1 (например, для бора в германии /(=17,3), а для примесей второго рода /(<1. Например, для алюминия и галлия в германии /( = 0,01, для индия /( = 0,001, для теллура и висмута /( = 4-10- и т. д. Чем К<, тем легче очищается вещество от этой примеси. Для примесей с К> метод мало эффективен, а при /С=1 очистка совсем не происходит. Например, таким образом нельзя удалить бор из кремния, так как Этим методом не достигают однородности химического состава слитка и совершенство структуры. [c.323]

    Не всегда удается подобрать химическую реакцию, с помощью которой можно было бы эффективно очистить данное вещество от всех лимитируемых примесей. Химические методы не пригодны для очистки веществ от примесей с близкими к основному веществу свойствами это обусловлено тем, что до настоящего времени еще не разработаны достаточно удовлетворительные схемы многоступенчатых процессов глубокой очистки веществ с помощью химических реакций. Кроме того, химические методы разделения смесей всегда сопровождаются загрязнением выделяемого вещества химическими реагентами. [c.31]

    ИЗ которого наглядно видно, что чем больше а отличается от единицы, тем больше эффект разделения, выражаемый через разницу (у—х) составов равновесных фаз. Поэтому в теории процессов разделения иногда пользуются величиной (а—1), называемой коэффициентом обогаш,ения. Е сли коэффициент обогащения равен нулю, то, как следует из выражения (11.3), разделение смеси не происходит, т. е. состав обеих равновесных фаз будет одинаков. Это имеет место тогда, когда основное вещество образует азеотроп с отделяемой примесью. Как было показано выше, в химических методах очистки коэффициент разделения обычно намного больше единицы. Поэтому понятие о коэффициенте обогащения используется лишь в теории физико-химических методов, в которых величина а часто мало отличается от единицы. [c.34]

    Приготовление стандартных образцов чистых металлов и металлоидов также осложнено рядом помех принципиального характера. Среди них важнейшими являются близость физико-химических свойств эталонируемых веществ и примесей, способность к образованию твердых р астворов и различных дефектов в кристаллических структурах, которая в конечном счете приводит к локальным микронеоднородностям химического состава. Как и в случае приготовления эталонов газообразных веществ, серьезные помехи возникают за счет трудностей в выборе абсолютно инертного материала, исключающего химическое взаимодействие с эталонируемым веществом в процессе его очистки и хранения. Тем не менее применение ряда новых методов очистки (среди которых важнейшее место занимают зонная плавка и иодидное фракционирование) дает возможность в настоящее время получать высокие степени очистки некоторых металлов — содержание примесей в них не выще 1 10 %  [c.52]

    Из двух методов получения пересыщенных растворов—путем испарения части растворителя и путем охлаждения растворов, насыщенных при нагревании,—предпочитают пользоваться последним. При кристаллизации через охлаждение пользуются такими растворителями, в которых растворимость кристаллизуемого вещества резко изменяется с температурой. Существенной является также способность растворителя хорошо растворять примеси чем больше разница в величинах растворимости основного продукта и примесей, тем легче осуществляется очистка. Нужно отметить, что загрязнения могут сильно влиять на скорость кристаллизации и на полноту выделения кристаллизуемого вещества из раствора. Иногда в присутствии значительного количества примесей кристаллизация может вообще не наступить, а если и удается добиться выделения кристаллов, то потери вещества в маточном растворе оказываются слишком большими. Поэтому во многих случаях к очистке вещества путем кристаллизации следует прибегать лишь после освобождения его от значительной части примесей другими способами, например перегонкой. [c.18]


    Перегонка с водяным паром. Перегонка с водяным паром является эффективным методом очистки органических соединений, не растворимых или трудно растворимых в воде. Она особенно пригодна в тех случаях, когда продукт реакции загрязнен большим количеством труднолетучих смолистых примесей. Этот способ позволяет проводить перегонку веществ при температуре, значительно меньшей, чем их температура кипения. Обусловлено это тем, что общее давление паров над смесью воды и нерастворимой в ней жидкости равно сумме упругости паров воды (р.) и этой жидкости (рд)  [c.33]

    В органической лаборатории нередко возникает необходимость очистки веществ, которые нельзя ни перегнать при обычных условиях, так как они разлагаются при длительном нагревании, ни разделить кристаллизацией. Так, например, часто необходимо осуществить очистку фракций, полученных тем или иным хроматографическим методом, от примесей высокомолекулярных веществ, присутствие которых не позволяет провести перекристаллизацию. В таких случаях выделение чистых веществ часто удается осуществить методом молекулярной перегонки. [c.272]

    Другим методом очистки белков, основанным на различии в растворимости, является противоточное распределение по Крейгу [29, 30]. Сегодня оно осуществляется с помощью полностью автоматических установок, позволяющих проводить распределение разделяемых компонентов при многих тысячах ступеней переноса. Состояние равновесия при каждом распределении между двумя фазами описывается законом распределения Нернста. При разделении двух веществ эффект разделения будет тем выше, чем больше фактор переноса 0, равный соотношению коэффициентов распределения к К2. [c.347]

    Отстаивание. Это простейший метод очистки жиров и масел. Он основан на том, что при спокойном стоянии происходит разделение веществ, имеющих разную плотность. Примеси с плотностью более высокой, чем жир, оседают на дно резервуаров. Разделение происходит тем быстрее, чем больше разность плотностей разделяемых веществ, чем больше размеры частиц и чем меньше вязкость жира. [c.71]

    Важнейшими методами очистки являются также экстракционные и сорбционные, в том числе с применением ионообменных сорбентов. Эти методы основаны на неодинаковом распределении примеси в гетерогенной системе, включающей основное вещество в виде кристаллов или в растворе, и фазу жидкого экстрагента или твердого сорбента. Соотношение содержания примеси в равновесных фазах (кристаллы и экстрагент, раствор и экстрагент, раствор и сорбент) определяется коэффициентом распределения К = С1/С2, где С1 и С2 — концентрации примеси. Чем больше значение К отличается от единицы, тем эффективнее очистка. Многократное повторение процесса или применение противоточной технологической схемы позволяет достичь удовлетворительной степени очистки даже в тех случаях, когда коэффициент распределения близок к 1. [c.65]

    Для очистки веществ можно пользоваться как химическими, так и физическими методами. Химические методы особенно удобны тем, что с их помощью часто можно очищать большие количества веществ, причем сравнительно быстро. Однако физические методы во многих случаях значительно более эффективны. Химические приемы очистки бывают двух типов. Приемы одного типа состоят в обработке вещества реагентом, который легко удаляет примесь, не действуя на основное вещество. Примером может служить освобождение углеводородов от галоидопроизводных кипячением с металлическим натрием. По другим приемам все основное вещество переводится в какое-нибудь производное с помощью реагента, не действующего на примесь. Таким путем можно освободить ж-ксилол от примеси изомерных ксилолов, превратив его действием серной кислоты в твердую сульфокислоту, а затем, удалив жидкие изомерные ксилолы, разложить сульфокислоту с обратным выделением ж-ксилола. [c.15]

    Выделение и очистка органических соединений обычно связаны с большими трудностями Эти трудности обусловлены тем, что свойства органических соединений крайне разнообразны и поэтому методы их выделения и очистки весьма многочисленны Если к тому же учесть сложность и неоднозначность протекания большинства реакций в органической химии, становится понятным, что эта задача в отдельных случаях является наиболее ответственной частью химического процесса Методы выделения, очистки, идентификации и качественного анализа органических соединений подробно изложены в практических руководствах по органической химии Поэтому мы рассмотрим лишь общие приемы, применяемые при очистке веществ в простейших случаях. [c.17]

    Биохимическая очистка является одним из основных методов очистки сточных вод НПЗ как перед сбросом их в водоем, так и перед повторным использованием в системах оборотного водоснабжения 1[3, 7, 77, 78]. Считается, что микроорганизмы способны окислять все органические вещества, за исключением тех искусственно синтезированных, которым нет аналогов в природе [79]. Интенсивность и последовательность окисления микроорганизмами того или иного вещества зависят от многих факторов, но решающее влияние на эти процессы оказывает химическое строение вещества. Наименее доступными источниками углерода являются вещества, не содержащие атомов кислорода,— углеводороды. Тем не менее, углеводороды в отсутствие в сточных водах в достаточном количестве других легко разлагаемых источников питания также расщепляются микроорганизмами активного ила. Микроорганизмы способны использовать углеводороды разных классов простого и сложного строения [80]. По-видимому, практически все углеводороды, входящие в состав нефти, могут являться объектом микробиологического воздействия. [c.124]

    Дистилляция и ректификация являются основными методами очистки, разделения и получения различных веществ. Применение стекла в качестве конструкционного материала для изготовления аппаратуры приобретает в настоящее время все большее значение. Стекло, особенно типа пирекс и кварц, обладает высокой коррозионной и термической устойчивостью, гладкой поверхностью и не вносит примесей в обрабатываемый продукт. Кроме того, стекло прозрачно, что позволяет наблюдать за происходящими процессами, тем самым обеспечивая высокое качество продукта. [c.184]

    Особо следует остановиться на задаче предупреждения, торможения биохимических процессов минерализацией органических веществ в воде водоемов. Известно, что при самых совершенных методах очистки бытовых сточных вод они спускаются в водоем с БПКполн в пределах 15—20 мг/л в расчете на разбавление и процессы самоочищения в водоеме. Вместе с тем при поступлении в водоемы некоторых производственных сточных вод, содержащих бактерицидные вещества, как было выше отмечено, биохимические процессы минерализации могут быть резко задержаны. В известной мере это ограничивает возможность сохранения привлекательного в эстетическом отношении внешнего вида водоема и его широкого использования для культурно-бытовых и спортивных целей. [c.158]

    Классическую проблему обессоливания коллоидов в настоящее время решают, как правило, с помощью гель-фильтрации. Не имеет смысла приводить или обсуждать здесь даже наиболее важные или интересные результаты. Укажем лишь на возможности метода и источники ошибок и рассмотрим примеры очистки веществ разных классов. Если отделяемые низкомолекулярные компоненты не являются солями, то целесообразно говорить о групповом разделении , основанном на различиях в молекулярном весе. Здесь существует много самых различных вариантов. Например, подобные смеси часто образуются при попытках модифицировать макромолекулу . В этом случае стремятся отделить избыток реагентов или промежуточных продуктов реакции. Когда полимер тем или иным путем взаимодействует с низкомолекулярными [c.136]

    Биологические методы очистки, а в последнее время и биоремедиации природных и техногенных сред, принадлежат к числу наиболее крупных и универсальных технологий, широко используемых в различных отраслях промышленной и другой хозяйственной деятельности человека. Они доказали свою эффективность, сравнительную экономичность и экологичность при очистке сточных промышленных и бытовых зафязненных вод [1-5] и других сред [6-8]. Вместе с тем особенности биологических систем не позволяют их активно использовать при работе с высококонцентрированными стоками, объемы которых в последнее время ускоренно увеличиваются. Это определяется как токсичностью веществ стоков, так и их низкой биодоступностью [9]. К числу таких стоков и отходов, загрязняющих окру- [c.227]

    Для растворения и химической обработки чистых веществ применяют в основном те реактивы, которые хорошо очищаются дистилляцией (возгонкой), и исключают из употребления большинство неорганических солей. Очистку прочих реактивов следует проводить тем методом, который используют для выделения примесей при анализе. В ряде случаев чистый реактив проще получить на месте (насыщением воды газом, растворением металла в кислоте), нежели очищать готовый продукт. [c.330]

    Ряд газов в особо чистом состоянии можно получить термическим разложением твердых веществ. Этот метод обладает тем преимуществом, что перед нагреванием можно полностью удалить воздух откачиванием. Тем не менее таким способом нельзя получить ни один газ, который совсем не содержал бы воздуха. Опыт показывает [1, 2], что твердые вещества в большинстве случаев содержат включения следов воздуха, выделяющихся лишь при разложении вещества. Если все это учесть, то действительно чистый газ можно получить лишь при использовании самого надежного метода очистки — сжижения и дистилляции (ср. гл. XII). В данной главе, подробно описаны две установки, служащие для получения чистого кислорода их, однако, можно использовать и при получении многих других газов. [c.363]

    При очистке и разделении нефтепродуктов методом адсорбции имеет место физическая адсорбция, отличающаяся от химической тем, что адсорбируемые вещества (сорбаты) сохраняют свою ин-дивид альпость и могут быть выделены при десорбции. В первую очередь адсорбируются полярные соединения с большим дипо.иь-ным моментом, затем неполярные вещества, в молекулах которых под действием силового поля молекул адсорбента возникают индуцированные дипо.ти, и, наконец, неполярные вещества, адсорбируемость которых определяется дисперсионным взвимодействием молекул адсорбента и адсорбируемого вещества. В соответствии с этим компоненты разделяемого нефтепродукта по адсорбируемости можно расположить в следующем порядке (по убывающей) смолисто-асфальтеновые вещества- тяжелые ароматические уг-, геподороды средние ароматические углеводороды—> легкие ароматические углеводороды->-нафтеновые и парафиновые углеводороды. [c.226]

    Ufo большкнство вредных веществ, ймёющйх неприятный пах, кипят при низкой температуре. Это свойство было использовано для осуществления конденсационного метода очистки, при котором отходящие технологические газы охлаж дают при постоянном давлении ниже температуры копденса-ции пара. Однако чем выше степень очистки, тем ниже должна быть температура охлаждения, а поэтому метод конденсации экономичен только при высоких концентрациях токсических компонентов в отходящих газах. [c.50]

    Сами Правила рассчитаны на обеспечение чистоты реки или водоема лишь в створах пунктов питьевого, культурно-бытового или рыбохозяйственного водопользования. Такой подход уже привел к тому, что многие реки нашей страны зафязнены локально или непрерывно почти на всем протяжении. В непроточных и слабопроточных водоемах процессы самоочищения протекают еще медленнее и нередко возникают аварийные ситуации. Такие явления возникли в Ладожском озере — одном из источников водоснабжения Санкт-Петербурга, во многих крупных водохранилищах. Все современные очистные сооружения построены с использованием деструктивных методов очистки, которые сводятся к разрушению зафязняющих воду веществ путем их окисления, восстановления, гидролиза, разложения и т. п., причем продукты распада частично удаляются из воды в виде газов или осадков, а частично остаются в ней в виде растворимых минеральных солей. В результате так называемые нетоксичные минеральные соли поступают в природные воды в количествах, соответствующих ПДК, но во много раз превышающих их естественные концентрации в водной среде. Поэтому сброс в реки и водоемы сточных вод, прошедших глубокую очистку от органических соединений азота, фосфора, серы и других элементов, тем не менее, повышает содержание в воде растворимых сульфатов, нитратов, фосфатов и других минеральных солей, вызывающих эвтрофикацию водоемов, их цветение за счет бурного развития синезеленых водорослей последние, отмирая, поглощают массу кислорода и лишают воду способности к самоочищению. [c.201]

    Среди современных методов химического анализа важное место занимают биохимические методы. Все более ппфокое использование этих методов связшю, во-первых, с возможностями решения с их помощью ряда актуальных задач аналитической химии и, во-вторых, с тем, что с развигаем биологии, биохимии, методов разделения и очистки веществ все более доступными и дешевыми становятся средства для проведения такого анализа. [c.109]

    Очистка воды от молекулярно растворенных соединений, представленных в основном органическими соединениями производится, как правило, с использованием активных углей. Количество идентифицированных органических соединений в природных водах к настоящему моменту достигает 1000, но оно не превышает 10-15 % общего количества примесей. Обработка воды активным углем из-за универсальности его действия является наиболее перспективным методом очистки от органических соединений. Для обработки питьевой воды в промышленных масштабах в нашей стране используются в основном древесные угли типа БАУ, ДАК, ОУ. В настоящее время для данной цели разрешено использовать также угли серии АГ, такие, как АГ-3 и АГ-5. Активные угли АГ, БАУ и ДАК относятся к гранулированным сорбентам, а ОУ к порошкообразным. Несмотря на то, что кинетика процесса адсорбции на порошкообразных активных углях (ПАУ) выше по сравнению с процессами на гранулированных углях, удельный вес порошкообразных углей в технологии обработки воды неуклонно снижается. Это объясняется большим удобством работы с гранулированными активными углями (ГАУ) при адсорбции, а также большей простотой их регенеращ1и. Адсорбционная обработка, как метод, позволяющий осуществить глубокую очистку воды, используется, как правило, в совоьсупно-сти с методами реагентной обработки, что объясняется экономическими вьи-одами комплексной обработки. Такой подход обусловлен также тем, что реальные загрязненные воды представляют собой не чистый стабильный раствор, а являются гетерогенной смесью растворенных, коллоидных и взвешенных веществ [c.551]

    Известно, что при глубокой очистке веществ практически приходится иметь дело не с одной, а с рядом и даже большим числом примесей. Между тем, данные по равновесию жидкость — пар относятся главным образом к бинарным системам. При этом, естественно, исследования проводятся по возможности с наиболее чистыми веществами. Чтобы выяснить, заметно ли влияние других примесных компонедтов на это равновесие, определения а некоторых разбавленных растворов были повторены с техническими продуктами, содержащими до 3% и более примесей [5, 6, 47, 48]. Для этих измерений использовали хроматографию или метод радиоактивных индикаторов, для чего к исследуемому техническому продукту добавляли незначительное количество соответствующего радиоактивного соединения. Было показано (табл. 1-3), что значения коэффициента разделения для технического продукта и для чистого бинарного раствора прак- [c.34]

    Трудность очистки высокомолекулярных веществ от низкомолекулярных примесей, в частности, от следов мономера, растворителей и воды, заставляет подходить особенно осторожно к оценке полученных результатов в каждом отдельном случае. Главным образом это относится к тем методам определения молекулярных весов, результат которых определяется числом растворенных частиц (химические методы, криоскопия, эбулиоскопия и др.). Методы, позволяющие получить средневесовое значение молекулярного веса и другие средние величины, мало чувствительны к низкомолекулярным примесям. К сожалению, химик, работающий в области синтеза полимеров, получив хороший анализ вещества, часто не придает должного значения тщательности очистки вещества от низкомолекулярных примесей, неуловимых методами элементарного анализа. [c.13]

    Особенность этого метода очистки поверхностей твердых веществ заключается в получении химического легко диссоциирующего соединения с последующим его разложением и восстановлением поверхности в токе тщательно очищенною водорода [96]. Обработанная таким образом поверхность по своим свойствам приближается к свойствам металлических пленок, полученных путем испарения. При этом весьма примечательно, что, несмотря на достаточно высокую эффективность метода и его специфичность, все еще довольно большая часть поверхности остается загрязненной. Это обстоятельство указывает на то, что поверхностные реакции способствуют удалению загрязнений, находящихся в адсорбированном состоянии или образующих непрочные химические соединения с поверхностью твердого тела. Наоборот, устойчивые поверхностные соединения, энергия образования которых превышает энергию вновь синтезируемого вешества, данный метод не позволяет удалять, тем более что разложение или улетучивание таких веществ протекает при более высоких температурах, чем основного соединения. Увеличение же температуры прокаливания чревато протеканием побочных процессов, таких, как диффузия газов и примесей из объема образца на его поверхность. Скорость данного процесса, по всей вероятности, определяется тремя факторами температурой, процентом примеси в образце и энергией ее связи с элементами твердого тела. Если энергия связи между А—А больше, чем между А—Б, где Б — при- [c.160]

    Дания по работе с химической литературой [15, 16], указать на наличие популярных статей, например [17—20], или же обратить внимание на то обстоятельство, что в 1981 году вопросам литературной работы химика был посвящен специальный выпуск журнала Всесоюзного химического общества имени Д. И. Менделеева [21]. Тем не менее мы стремились, чтобы книга оказалась полезной и для исследователей, работающих в других отраслях знания. Это нащло отражение не только в стиле изложения, но и в некоторых приме )ах. В то же время стремление использовать оригинальные примеры привело к тому, что основная их масса взята из тех разделов химии, которые связаны с непосредственной работой авторов — глубокой очисткой вещества кристаллизационными методами и спектральным анализом. Это, однако, не означает, что описанные методы применимы только в упомянутых разделах химии. [c.6]

    Исследование фазовых методов разделения веществ,проведенное Аникиным и Мержановым [148], показало, что основным критерим совершенства метода является его термодинамический коэффициент распределения. Наиболее эффективны методы очистки, основанные на фазовых превращениях первого рода, причем, чем полнее используются физико-химические различия разделяемых молекул, тем совершеннее метод разделения. В методе термодиффузии используется только количссгвсн- [c.102]

    В сточной воде производства дихлорбутадиена присутствуют хлориды, хлорорганические вещества дихлорбутадиен, трихлор-бутадиен, хлоропрен, высококипящие хлорспирты. Очистка сточной воды предусматривается методом электрохимического окисления, где, как и в других методах очистки, используются теплообменники, отстойники, фильтры, насосы. Подбор коррозионностойких материалов для аппаратуры установки очистки сточных вод весьма затруднен. Это обусловленно тем, что входящие хлориды могут взаимодействовать с хромоникелевыми сталями, хлорорганические соединения являются растворителями многих полимерных материалов. В процессе электролиза сточной воды выделяются активный хлор, хлораты, которые характеризуются высокой коррозионной активностью. [c.54]

    Анаэробные процессы протекают в замедленном Jгeмпe. Поэтому энергетический эффект, получаемый при микробном разложении органического вещества, весьма невысок. Так, при использовании бактериями в процессе аэробного распада одной молекулы глюкозы выделяется 674 кал, эта же молекула глюкозы, будучи микробиологически разложена в анаэробных условиях, выделит 15—27 кал. Между тем потребность в энергии у микробных клеток одинакова независимо от того, относится ли она к аэробам или анаэробам. Поэтому в анаэробных очистных, сооружениях, где получение необходимой микроорганизмам энергии идет медленно, распад органических веществ происходит значительно дольше, чем при аэробных методах очистки. [c.179]


Смотреть страницы где упоминается термин Тема 1. Методы очистки веществ: [c.20]    [c.415]    [c.306]    [c.2]    [c.261]    [c.140]    [c.241]    [c.137]    [c.90]    [c.97]    [c.173]    [c.239]    [c.151]   
Смотреть главы в:

Вопросы, упражнения и задачи по неорганической химии -> Тема 1. Методы очистки веществ




ПОИСК





Смотрите так же термины и статьи:

Метод веществам

Метод очистки

Очистка веществ

Хай-Темя



© 2024 chem21.info Реклама на сайте