Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Активность дыхания тканей и органов

    АКТИВНОСТЬ ДЫХАНИЯ ТКАНЕЙ И ОРГАНОВ [c.249]

    Значительного накопления радиоактивности в отдельных органах или тканях крысы обнаружить не удается (возможно, вследствие, недостаточной активности применявшихся С -катехинов). Продукты распада катехинов выводятся из организма как с углекислотой дыхания (до 30% в случае перорального введения и до 12% при подкожном введении), так и с мочой (до 20 и 35% соответственно). При незначительном содержании в пище катехины, по-видимому, полностью используются организмом. [c.243]


    Степень разветвленности и сложности этих систем, соотношение между отдельными группами входящих в них катализаторов, их активность весьма непостоянны. Эти особенности зависят от систематического положения видов, условий развития организма, его возраста, специфических особенностей отдельных органов и тканей и многих других факторов. В ряде случаев удается показать при этом, что характер связанных с дыханием окислительных систем отражает исторически сложившуюся адаптацию организма к определенному сочетанию условий внешней среды (Б. А. Рубин). Раскрытие приспособительного значения химических процессов дыхания и катализирующих дыхание ферментных систем должно в связи с этим составить одну из основных задач при ознакомлении с относящимися к этой функции материалами. [c.211]

    Все клетки организма, в каких бы тканях и органах они ии находились, содержат полный набор генов, такой же, какой имела зигота. Но в каждой клетке действует только часть генов, связанная с дифференциацией и функциями данного типа клеток. Одни гены функционируют во всех клетках (например, контролирующие дыхание, проницаемость мембран, синтез АТФ и ряд других общих свойств), другие только в некоторых из них. Каждая клетка характеризуется своим набором активных генов. [c.306]

    Минеральные вещества. Добавление раствора солей в воду, на которой выращивают проростки, обычно усиливает дыхание корней. Этот эффект получил название солевого дыхания . Полагают, что солевое дыхание отражает усиление обмена веществ, необходимое для энергетической поддержки активного транспорта ионов корнем. Однако до конца это явление не изучено. Отмечены случаи, когда увеличенная интенсивность дыхания сохранялась после удаления солей. В тканях других органов этот эффект удается получить не всегда. [c.173]

    Следовательно, различия между отдельными видами, органами и тканями растения, а также между возрастно неодинаковыми объектами не ограничиваются лишь активностью дыхания, но и носят нередко более глубокий характер. В особенности отчетливо эти различия выявляются при изучении влияния, оказываемого на дыхание и величину ДК парциальным давлением кислорода. [c.287]

    При биологическом синтезе пептидов их аминокислотная последовательность детерминирована генетически. Эволюционный подход к функциям РП позволяет разделить их на три основные группы в соответствии с онтогенетическим происхождением из разных зародышевых слоев и с последующим разделением жизненно важных функций организма между различными органами и тканями. На ранних стадиях развития зародышей различают три слоя дифференцированных клеток эндодерма — внутренний слой, мезодерма — промежуточный слой и эктодерма — наружный слой зародыша. Эта первая стадия дифференциации определяет дальнейшее развитие отдельных органов и тканей. Из эктодермы развиваются органы, с которыми связаны контактные, чувствительные и покровные функции это эпителий, головной и спинной мозг, сенсорные органы (зрения, слуха, обоняния). Эндодерма является основой для развития пищеварительного тракта, органов дыхания, внутренних органов (сердце, эндокринные железы и половые органы). Промежуточный слой — мезодерма обеспечивает формирование органов с опорными и трофическими функциями скелета, мышц, кровеносной системы, соединительной ткани. Структуры и тканеспецифичность известных регуляторных пептидов в определенной степени коррелируют с их родственным происхождением, а в ряде случаев структуры проявляют перекрестную тканеспецифичность. Схема объединения регуляторных пептидов в фуппы, соответствующие их происхождению, может быть использована для сопоставления их аминокислотных последовательностей со специфической активностью в организме. [c.62]


    Ответный сигнал индикаторного организма на нарушение хим, состава среды м, б. самым разнообразным изменение характера поведения, интенсивности роста, скорости метаморфоза, состава крови, биоэлектрич. активности органов и тканей, нарушение ф-ций органов пищеварения, дыхания, размножения, патологоанатомич. изменения организма, летальный исход. Напр., при применении микроорганизмов в кач-ве аналит. индикаторов исследуемый компонент можно определять по характеру и интенсивности пигментации и люминесценции (для фотобактерий), динамике накопления биомассы, диаметру зоны угнетения роста микробов, изменению электропроводности р-ров, pH, по качесгв. составу и интенсивности газообмена и др. Все изменения оценивают визуально или измеряют с помощью приборов, напр спектрофотометров, потенциометров, ана- [c.287]

    Острое отравление. На протяжении 5-7 мин после укуса в месте проникновения яда возникает реакция окружающих тканей и кровеносных сосудов. В отличие от яда элапид в месте инокуляции яда быстро развивается геморрагический отек и некроз тканей. Через 15-20 мин хорошо видны признаки лимфангоита и лимфаденита. Местный отек и некроз могут достигать таких размеров, что требуют вначале декомпрессионной фасциотомии, а позже — пересадки кожи. Наиболее угрожающим патологическим явлением общего характера может быть шок. Детоксикация яда печенью, активное выделение его почками сопровождаются тяжелыми поражениями этих органов никакие ткани или органы не инактивируют яд полностью. Минимальная смертельная доза виперо-токсина для человека колеблется от 0,4 до 0,8 мг/кг в зависимости от вида гадюки. Смерть обычно наступает от паралича дыхательного центра на вскрытии — кровоизлияния во многих внутренних органах. Для пострадавшего от гюрзы характерны быстрый упадок сил, сильная боль в месте укуса, головокружение, рвота, беспрерывные обмороки, тяжелое дыхание, бред на месте укуса, на слизистых оболочках десен и языка — многочисленные кровоизлияния. Наиболее существенным симптомом при отравлении ядом эфы является кровотечение из носа и рта, рвота кровью, гематурия развивается лихорадка, головные боли, бред, судороги на вскрытии погибших констатируются гемолиз, кровоизлияния в печень, почки, легкие. Концентрация яда в сыворотке крови при выраженных признаках системной интоксикации составляет 116 нг/мл. [c.740]

    В упомянутых выше двух исследованиях опыты ставились на теплокровных животных, особенность дыхания которых состоит в том, что -образовавшаяся в тканях животных в процессе дыхания углекислота поступает в кровь и при помощи весьма активного фермента — угольной ангидразы — удаляется через легкие из организма. Несомненно, что наличие в крови угольной ангидразы должно было приводить в опытах прежних авторов к почти мгновенному наступлению полного обменного равновесия между кислородом углекислоты дыхания и кислородом воды органи.зма, что исключало возможность установления на животных объектах истинной картины окисления. [c.125]

    Для высших растений на примере завершающих оксидаз показано, что изменения условий среды (температура, парциальное давление кислорода) могут вызывать изменения ферментативного-аппарата. Рубин, Арциховская и Иванова (1951), Арциховская и Рубин (1955) нашли, что активирование молекулярного кислорода в тканях цитрусовых плодов и яблок катализируется одновременно несколькими оксидазами, обладающими различной зависимостью-от факторов среды. В процессе развития плодов, происходящего на фоне закономерно изменяющихся температурных условий, изменяется и соотношение активности отдельных оксидаз. У зеленых растущих плодов основная роль в дыхании принадлежит оксидазам, способным развивать максимальную активность в условиях высоких температур воздуха, характерных для данного периода развития этих органов. К осени ведущая роль переходит к оксидазам, активность которых менее чувствительна к понижению температуры воздуха. Аналогичные соотношения наблюдаются и между тканями, находящимися в различных условиях снабжения кислородом. Чем больший недостаток кислорода испытывают клетки ткани, тем большую роль играют оксидазы, способные насыщаться кислородом при низких парциальных давлениях кислорода. На цитрусовых плодах экспериментально вызваны изменения в системе завершающих оксидаз путем воздействия температурой и изменением концентрации кислорода в окружающей плод атмосфере. Эти данные показывают, что в приспособлении дыхательного процесса к окружающим условиям существенное значение имеют изменения ферментативного аппарата. Данные о роли ферментативного аппарата в приспособлении организма к температуре и парциальному давлению кислорода получены также и для животных. Так, например, возрастные изменения в системе катализаторов дыхания у мясной мухи наблюдали Карлсон и Векер (Karlson а. Weker, 1955). Интересные данные приводятся в работе Вержбин-ской (1954), которая показала, что переход животных от водного образа жизни к наземному, совершившийся в процессе эволюции, привел к существенным изменениям в окислительно -восстанови-тельной системе мозга. При этом значительно снизилась активность ферментов, катализирующих анаэробные процессы, и одновременно существенно возросла активность цитохромной системы, активирующей кислород, поглощаемый в процессе аэробного дыхания. [c.89]


    Старение как отдельных органов, так и целого растения связано с уменьшением метаболической активности и снижением скоростей синтеза РНК и белка. Мы уже говорили об изменениях в интенсивности дыхания и проницаемости мембран, сопровождающих созревание плода. Действие большинства гормонов замедляющих старение, по крайней мере частично обусловлен тем, что они поддерживают синтез РНК и белка. Старение ткани плода, например, у бобов подавляется ауксином или цито-кинином. В одних листьях старение замедляется под воздействием одного цитокинина, тогда как в других эффективен только один гиббереллин. Многие исследования показывают, что старение у растений представляет собой не просто какой-то замедляющийся и затухающий процесс, а скорее активную физиоло-гическую стадиЮ жизненного цикла, в такой же мере регулируемую гормонами, как и любая другая предшествующая ей стадия. Смерть индивидуальных клеток или тканей в растении, может быть нормальным, контролируемым и локализованны1Л. событием, помогающим в создании окончательной формы растения. В качестве примера можно привести гибель клеток тра-хеид и сосудов, из которых образуются полые, но эффективные клетки водопроводящей системы. [c.317]

    Длительное завядание наступает, когда почва не содержит доступной для растений влаги. При этом тургесцент-ное состояние листьев не восстанавливается, создается остаточный водный дефицит, корневые волоски отмирают, вследствие чего даже после полива растений поглош,ение воды происходит очень медленно, и лишь с появлением новых корневых волосков водоснабжение приходит в норму. При длительном завядании обезвоживаются эмбриональные клетки тканей, чтО приводит к глубокому нарушению свойств протопласта и способности клеток к росту. Ферменты, регулирующие превращение крахмала в сахар, подвергаются изменениям необратимого характера. При длительном завядании протопласта изменяются свойства коллоидов увеличивается проницаемость протопласта, и при погружении растения в воду. наблюдается, значительный экзоосмос электролитов и органических" веществ. Плазмолиз в клетках таких тканей проходит быстро, уменьшается дисперсность биоколлоидов. Кроме того, повреждаются зеленые пластиды, снижается их ассимиляционная способиость, приостанавливается фотосинтезирующая активность растений, усиливается дыхание растительных тканей, а в период плодоношения задерживается налив зерна. Вода растущих частей растения оттягивается клетками к органам, имеющим более высокую-концентрацию осмотически активных веществ. Именно этим и объясняется так называемый захват зерна, при котором вода из колоса перемещается в ткани листьев и стебля. Если растение находится некоторое время в завядшем состоянии в фазе молочной или восковой спелости, то зерно хлебных злаков становится щуплым, а у хлопчатника происходит сбрасывание бутонов и даже завязей. [c.135]

    Терминальный участок дыхательной цепи клеток и тканей. Ингибиторами терминальной оксидазы дыхательной цепи митохондрий являются цианиды, азид натрия, сульфид натрия, СО. В срезах, клетках и перфузируемых органах они подавляют дыхание, активный транспорт ионов и восстанавливают остальные переносчики дыхательной цепи [158, 167, 493—498]. Их эффект сходен с действием аноксии. Однако даже при высоких концентрациях ингибиторов в клетках и тканях трудно получить полное подавление дыхания. Так как в митохондриях тканей млекопитающих (в отличие от дрожжей, бактерий, грибов и растений) активность альтернативной основной дыхательной цепи оксидазы, чувствительной к производным гид-роксамовой кислоты, не выявлена, наличие ЦРД в тканях и клетках связывается с немитохондриальными кислородзависимыми процессами [2, 498]. Из табл. 9 видно, что величина ЦРД зависит от окисляемого субстрата. [c.102]

    При вычислении дозы внутреннего облучения от радионуклидов, поступивших в организм человека через органы дыхания или пищеварения, а также от радионуклидов, содержащихся в отдельных органах и тканях, удобно использовать дозовые коэффищ1енты — числовые значения дозьт (поглощенной, эквивалентной, эффективной и т.д. в зависимости от задачи) на единицу активности поступившего в организм или содержащегося в данном органе или ткани радионуклида. [c.194]

    Фаза дезадаптации. Это состояние может возникнуть в результате истощения физиологических резервов и нарушения взаимодействия регуляторных и метаболических механизмов адаптации. В результате в организме нарушается баланс расхода и восстановления в органах и тканях, а также взаимосвязь в работе физиологических систем. Симптомами этого состояния являются сдвиги гомеостазируемых показателей деятельности организма, напоминающее те сдвиги, которые наблюдаются в фазе начальной адаптации. Вновь в состояние повышенной активности приходят вспомогательные системы — дыхания и кровообращения энергия в организме тратится не экономно. [c.203]


Смотреть страницы где упоминается термин Активность дыхания тканей и органов: [c.398]    [c.506]    [c.485]    [c.153]    [c.246]   
Смотреть главы в:

Биохимия Издание 2 -> Активность дыхания тканей и органов




ПОИСК





Смотрите так же термины и статьи:

Активность дыхания



© 2024 chem21.info Реклама на сайте