Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кольцевая форма генома

    ДНК, входящая в состав частиц вируса гепатита В,— это молекула, построенная из двух линейных компонентов полноразмерной (—)ни-ти ( 3,2 т. п. н.) с белком, ковалентно присоединенным к 5 -концу, а также сегмента (+)нити (1,7—2,8 т. п. н.). Этот сегмент содержит участки, комплементарные обоим концам (—)нити, и поэтому удерживает вирионную ДНК в кольцевой форме (рис. 163, а). В вирионе имеется вирус-специфическая ДНК-полимераза, способная достраивать (4-)нить до размера полного генома. Геном вируса мозаики цветной капусты крупнее и содержит около 8 т. п. н. это двухнитевая кольцевая молекула, обе цепи которой не непрерывны (рис. 163,6). [c.315]


    Из одного F штамма может возникнуть множество различных штаммов Hfr, для каждого из которых характерна собственная локализация и ориентация F-фактора в хромосоме бактерии (рис. 8.8). Это проявляется в описанных выше опытах с прерванной конъюгацией в каждом Hfr-штамме передача бактериальной хромосомы начинается с собственной, иной чем у других штаммов точки различна также и ориентация хромосомы при этом. Для каждого штамма можно установить характер сцепления между генами, расположенными неподалеку от точки, с которой начинается передача бактериальной хромосомы. Совокупность таких данных по множеству различных штаммов Hfr позволяет установить характер сцепления маркеров в хромосоме в целом и построить физическую карту хромосомы Е. соИ. Как показано на рис. 8.9, эта карта имеет форму кольца, что полностью соответствует кольцевой форме бактериальной ДНК. [c.238]

    Развитие методов генной инженерии привело к разработке системы трансформации для дрожжей, что способствовало более глубокому изучению у них механизма рекомбинации. Гибридные плазмиды, содержащие участки дрожжевой ДНК с известными маркерами, клонированные на векторе Е. соИ, могут быть введены в клетки дрожжей. При этом может происходить встраивание плазмидной ДНК в хозяйскую хромосому за счет рекомбинации между гомологичными последовательностями хромосомы и участка дрожжевой ДНК, входящего в состав плазмиды. При использовании плазмидной ДНК в замкнутой кольцевой форме удается с заметной частотой отобрать трансформированные дрожжевые клетки. В то же время введение двухцепочечного разрыва в дрожжевую [c.150]

Рис. 5-71. Схематическое изображение (масштабы не соблюдены) различных типов вирусных геномов. У самых мелких вирусов геном состоит всего из нескольких генов и генетическим материалом может быть них как ДНК, так и РНК у наиболее крупных вирусов геном всегда представлен двухцепочечной ДНК, включающей сотни генов. Такие особенности хромосом, как кольцевая форма молекул ДНК или особое строение концов цепей у линейных молекул, позволяют вирусам избежать трудностей, связанных с репликацией нескольких последних Рис. 5-71. <a href="/info/376711">Схематическое изображение</a> (масштабы не соблюдены) <a href="/info/25662">различных типов</a> вирусных геномов. У самых мелких <a href="/info/1435353">вирусов геном состоит</a> всего из <a href="/info/1895162">нескольких генов</a> и генетическим материалом может быть них как ДНК, так и РНК у наиболее <a href="/info/1408889">крупных вирусов</a> геном всегда представлен двухцепочечной ДНК, включающей сотни генов. Такие особенности хромосом, как <a href="/info/1435362">кольцевая форма молекул</a> ДНК или <a href="/info/809859">особое строение</a> <a href="/info/626669">концов цепей</a> у <a href="/info/301099">линейных молекул</a>, позволяют вирусам избежать трудностей, связанных с репликацией нескольких последних
    Здесь ограничимся тем, что напомним об эписомах бактерий (гл. 9) — элементах бактериального генома, которые могут существовать в интегрированном с хромосомой и в свободном состоянии. О них было рассказано на примерах f-фактора Е. соИ, факторов лекарственной устойчивости и умеренных бактериофагов в состоянии профага. Таким образом, сходные элементы существуют и в геномах эукариот. Во многих случаях показано не только сходство, но и тождество первичной структуры экстрахромосомных и хромосомных элементов. Так, в частности, уже упоминавшаяся двунитевая РНК штаммов-убийц у дрожжей имеет комплементарные последовательности в геноме. У того же объекта Р. Планта и В. Л. Ларионов описали кольцевую плазмиду с контурной длиной 3 мкм (9000 п. н.) — копию генов XII хромосомы, кодирующих рибосомную РНК. У дрозофилы обнаружены свободные кольцевые формы некоторых МДГ. [c.252]


    Исходный димер объединяемых генов состоит из генов 1 и 2, объединенных линкером, содержащим подходящие сайты рестрикции (/) димер фрагментируют ДНКазой I и образовавшиеся концы затупляют нуклеазой S1 (2) отбирают фрагменты, размер которых соответствует длине одного гена плюс длина линкера, (3) переводят их в кольцевую форму лигированием по тупым концам и 4) линеаризуют с помощью рестриктазы по сайту, который находится в линкере образующаяся в итоге библиотека генов содержит гибридные молекулы ДНК, кодирующие N-концевую часть белка 2 и С-концевую часть белка 1 (5) химерные гены клонируют в экспрессирующем векторе сразу или после амплификации с помощью ПЦР с использованием по одному из праймеров, комплементарных концам объединяемых генов, которые соседствуют с линкером, и после экспрессии химерных генов получают клонотеку химерных белков [c.330]

    Линейная и кольцевая формы генома бактериофага X с указанием положения генов. Кольцевая форма образуется при отжиге линейной ДНК и лигировании одноцепочечных липких концов. Эти концы и места их соединения обозначены сов. [c.182]

    Передача резистентности. Гены, обусловливающие резистентность, могут передаваться от одной бактерии к другой различными путями. Наиболее обычный механизм — конъюгация, простейшая форма полового процесса, описанная в разд. 2.3.3. Гены резистентности часто находятся в плазмидах (мелких кольцевых фрагментах ДНК). Они способны реплицироваться, а их копии могут передаваться в ходе конъюгации чувствительным бактериям, которые в результате становятся устойчивыми к данному антибиотику. Обмен генетической информацией между микробами (даже разных видов) может привести к так называемой множественной резистентности, т. е. неуязвимости возбудителя сразу для нескольких лекарственных препаратов. Большой проблемой для многих больниц в настоящее время является инфекция, вызываемая полирезистентными штаммами золотистого стафилококка. [c.227]

    Это положение легче всего проиллюстрировать на следующем примере. Сведем для простоты 200 ООО пар оснований (входящих в состав оснований) к 37 символам, и пусть 33 буквы алфавита от А до Я изображают нуклеотидную последовательность. При репликации фаговой ДНК клетка производит непрерывную цепь длиной, быть может, в 20 алфавитов (около 600 букв). Затем эта длинная цепь разрезается после каждой 37-й буквы, поскольку как раз связка из 37 букв (нуклеотидов) втискивается в головку фага. В результате один комплект нуклеотидов фага будет иметь последовательность от А до Я плюс участок от А до Г следующий комплект — от Д до Я плюс участок от А до 3 следующий за ним — от И до Я плюс участок от А до М следующий за ними — от Н до Я плюс участок от А до Р и т. д. Таким образом, каждая молекула ДНК начинается и оканчивается своей личной нуклеотидной последовательностью, причем вблизи ее концов, очевидно, имеются тождественные последовательности букв. Поскольку специалисты по фагам — это всегда люди исключительно умные и образованные, тонко чувствующие все оттенки языка, они мигом смастерили два соответствующих термина концевая избыточность (или повторение) и циклические перестановки [480]. Как бы там ни было, но генетические исследования но Т-четным фагам убедительно показали, что ген А сцеплен с геном Я. А это легче всего понять, признав, что геном этих фагов имеет кольцевую форму [480]. Более того, было продемонстрировано, что кольцевая форма либо фактически существует, либо может возникать у самых разных нуклеиновых кислот — от очень маленьких молекул (как у фагов 5X174 и fd) до очень крупных (как в хромосоме Е. соИ). Тем не менее когда оболочку Т-четных фагов разругпали с помощью осмотического шока, то даже при соблюдении всех мер предосторожности всегда были ясно [c.125]

    Фаг Т7 содержит линейную двухцепочечную по всей длине молекулу ДНК. Частичное расщепление этой ДНК экзонуклеазой III с последующим отжигом выявляет наличие в ее структуре концевых повторов. При этом в отличие от фагов Т2 и Т4 у фага Т7 не происходит кольцевых перестановок генов. При инфекции фагом Т7 репликация фаговой ДНК инициируется на участке ori, расположенном на расстоянии, соответствующем 17% общей длины молекулы от левого конца ДНК. В репликации участвует линейная молекула ДНК кольцевые формы не образуются. На более поздних, стадиях инфекции наблюдается образование весьма протяженных линейных конка-темеров ДНК Т7. Предложите модель репликации ДНК фага Т7, объясняющую необходимость возникновения конкате-мерных структур для полной репликации линейного фагового генома. [c.129]

    Кольцевая структура генома. Оказалось, что различные штаммы Hfr переносят гены в клетки-реципиенты в неодинаковой последовательности. Сопоставление этих последовательностей показало, что все они согласуются с единой круговой генетической картой. Кольцевая структура генома Е. соИ была подтверждена в исследованиях Дж. Кэйрнса, получившего радиоавтографы ее реплицирующейся хромосомы (рис. 9.4). Единая кольцевая молекула генома Е. соИ содержит около 4000 тыс. п. н. Она может дополнительно включать F-фактор, имеющий кольцевую форму и состоящий из 60 тыс. п. н., а также другие плазмиды, профаги и иные необязательные элементы. [c.204]


    Если есть тестеры с перекрывающимися делециями, захватывающими как разные, так и одинаковые участки мтДНК, в сумме составляющими весь митохондриальный геном, то в качественном тесте можно картировать любую мутацию мтДНК. Карта митохондриального генома имеет кольцевую форму (рис. 10.8). Ниже дан перечень картированных генов (см. стр. 242). [c.241]

    Сорш-подобные, или mdg-элементы, по своей организации во многом схожие с провирусами ретровирусов (см. 14.6.1) содержат прямые длинные концевые повторы, несущие промоторные области, могут находиться в автономной кольцевой форме, а при встраивании в хромосому генерируют короткие прямые дупликации. Обычно присутствуют в 20-40 копиях на гаплоидный геном мух и в 150-200 копиях на клетку в культуре клеток Drosophila. Подвижные элементы такого типа обнаружены также в дрожжах и растениях. [c.429]

Рис. 28.17. Генетическая карта фага . Показаны лишь некоторые гены. После ироникновения в бактериальную клетку линейная двухценочечная ДПК переходит в кольцевую форму. Рис. 28.17. <a href="/info/1874539">Генетическая карта фага</a> . Показаны лишь <a href="/info/1435353">некоторые гены</a>. После ироникновения в <a href="/info/32980">бактериальную клетку</a> линейная двухценочечная ДПК переходит в кольцевую форму.
    Как уже было сказано, ряд фагов (фХ174, 04, М13 и др.) имеют однонитевой кольцевой геном. Вскоре после попадания такого генома в клетку он превращается в кольцевой ковалентно-непрерывный дуплекс (или, как говорят, в репликативную форму). Эго превращение включает ряд стадий 1) образование затравки 2) элонгацию комплементарной цепи, осуществляе.мую клеточной ДНК-полнмеразой П1 3) удаление РНК-затравки, которое производится, по-видимому, за счет 5 -экзонуклеазной активности клеточной ДНК-полимеразы I 4) достраивание комплементарной цепи 5) лигирование концов комплементарной цепи ДНК-лигазой и 6) внесение сверхспиральных витков в ковалентно-непрерывный дуплекс прн помощи гиразы. Обратим внимание, что все Арменты, обеспечивающие перевод родительского генома в репликативную форму, имеют клеточное происхождение. [c.272]

    Удобно расчленить раунд репликации ДНК на три стадии 1) переход родительского генома в репликативную форму 2) собственно репликация репликативной формы и 3) переход репликативной формы в зрелый дочерний геном. Рассмотрим несколько вирусных систем, у которых синтез ДНК осуществляется при участии двухнитевых кольцевых молекул (рнс, 148), Такие кольца — репликативные формы — могут возникать несколькими способа.ми путем синтеза комплементарной цепи на однонитевой кольцевой матрице (фаг с( Х174), в результате спаривания липких концов, (фаги Р2, Р4), в результате сайт-специфической (фаг Р1) илн общей (фаг Р22) внутримолекулярной peкo.vlбинaцни. между концевыми повторами и т. д. Наконец, в форме двухнитевого кольца [c.280]

    В зараженной клетке ДНК этих двух вирусов переходит в ковалентно-непрерывную форму, которая, как известно, удобна для репликации. Однако у обоих вирусов репликация ДНК-генома осуществляется при посредстве промежуточных линейных молекул РНК. Эти РНК образуются в результате транскрипции вирусных ДНК в клеточном ядре хозяйским ферментом РНК-полимеразой П. Транскрибируется только одна из нитей вирусной ДНК, причем промоторы и терминаторы расположены на кольцевом геноме таким образом, что наряду с субгеномными мРНК образуются молекулы (Ч-)РНК более длинные, чем геном. Ясно, что в длинных транскриптах должен быть прямой концевой повтор. Этот повтор способствует преодолению трудностей, возникающих при снятии ДНК-копии с З -конца линейной матрицы. [c.316]

    Олигонуклеотид-направленный мутагенез с использованием плазмидной ДНК Основной недостаток олигонуклеотид-направ-ленного мутагенеза с использованием фага М13 -большое число процедур. Чтобы выделить мутантную форму нужного гена, приходится затратить много времени. В качестве альтернативы системе с использованием фага М13 было разработано множество других подходов, основанных на применении плазмидных ДНК. Это позволяет обойтись без переноса Интересующего исследователя гена из плазмиды в фаговую ДНК, а после завершения мутагенеза - обратно в плазмиду. Один из этих подходов включает встраивание ДНК в плазмидный вектор, который несет функциональный ген устойчивости к тетрациклину и неактивный ген устойчивости к ампициллину в середине последнего заменен один нуклеотид (рис. 8.3). Клетки Е. соИ трансформируют вектором, несущим ДНК-мишень, и двухцепочечную плазмидную ДНК денатурируют щелочью с тем, чтобы получить одноцепочечные кольцевые молекулы. Денатурированную ДНК отжигают с тремя разными олигонуклеоти- [c.161]

    Одна из наиболее упо фебляемых схем такого мутагенеза приведена на рис. 85. С этой целью исходный ген встраивают в двунитевую репликативную форму ДНК фага М13, зрелые частицы которого содержат однонитевую кольцевую молекулу ДНК (плюс-цепь, см. 5.7). Введение полученной рекомбинантной ДНК в бактериальные клетки приводит к накоплению частиц бактериофага, содержащих однонитевую рекомбинантную ДНК, из которых ее можно выделить и использовать в качестве матрицы для ДНК-полимеразы. Для репликации используют специально сконструированный праймер, который соответствует участку встроенного гена, содержащему кодирующий элемент заменяемой аминокислоты. При этом по обе стороны от этого тринуклеотнда праймер полностью комплементарен рекомбинантной ДНК, а в пределах этого тринуклеотида заменен таким образом, чтобы в образующейся при репликации минус-цепи образовалась запла- [c.305]

    Кольцевые ДНК [8]. В связи с открытием кольцевых замкнутых ДЩК и их использованием в генной инженерии возник интерес к топологическим аспектам конформащш макромолекулы ДНК и системы, этих молекул в условиях, когда эти молекулы являются замкнутыми кольцевыми. Обычно в разбавленных растворах (в воде) молекулы ДНК являются двухнитчатыми, причем две цепи ДНК образуют двойную спираль, в которой на один виток приходится 70 = 10 мономерных звеньев (пар оснований). Если ДНК существует в кольцевой замкнутой форме, то две одиночные цепи, из кото- [c.81]

    Гель, полимерная сетка, пропитанная растворителем. Подобно твердому телу, гель сохраняет форму. Примеры студни, желе. Электрофорез в гелях широко испо.яьзуется при определении последовательности ДНК, в генной инженерии и при исследовании кольцевых ДНК. [c.154]

    Другим протекающим в природе процессом генетической рекомбинации является лизогения. При заражении бактериальной клетки определенными видами фагов ДНК этих фагов могут ковалентным образом встраиваться в кольцевую хромосому клетки-хозяина вместо того, чтобы сразу приступить к образованию дочерних фаговьк частиц с последующим лизисом клеток, как это бывает в случае обычной фаговой инфекции. Встроившись в хромосому клетки-хозяина, фаговый геном может реплицироваться в ее составе в течение многих поколений, не проявляя себя в форме новьк фаговых частиц. Однако спустя некото- [c.974]

    Образование фрагмента Оказаки на отстающей цепи связано с синтезом ДНК комплементарной одноцепочечной области, образуемой при движении репликационной вилки. Для изучения событий инициации и продолжения синтеза такой цепи ДНК в качестве матриц были использованы три одноцепочечные ДНК фагов. Каждый из этих фаговых геномов представлен кольцевой одноцепочечной ДНК, получившей название вирулентной или (-1- )-цепи. На рис. 33.1 показано, что синтез комплементарной, или (- )-цепи, превращает геном в двухцепочечную кольцевую репликативную форму (РФ) ДНК. Она может находиться в виде или релаксированного кольца (РФП) или суперспирализованного кольца (РФ1). Синтез комплементарной цепи рассматривается как аналог синтеза отстающей цепи двухцепочечной ДНК. [c.421]

    Карта генома фага Ми показана на рис. 36.13. Внедренный геном Ми имеет тот же порядок генов, что и свободная фаговая ДНК, которая имеет линейную форму. (Следует отметить существующее отличие от фага лямбда, свободная линейная ДНК которого при инфекции образует кольцевую молекулу в результате интеграции образуется линейный профаг, порядок генов которого является пермутированным относительно порядка генов свободной ДНК фага.) Линейные геномы фага Ми не содержат ни липких концов, ни повторов поэтому не ясно, каким образом осуществляется согласованное действие концов во время интеграции. Возможно, что реакция зависит от гомологии, которая встречается на расстоянии примерно 100 пар оснований от каждого конца. Существование механизма, узнающего специфические концы интегрированной последовательности фага Ми, было обнаружено при открытии способности этого фага вырезаться. Реакция происходит только в том случае, если профаг Ми приобретает ISl-элемент. Механизм вырезания неизвестен, однако установлено, что в него вклю- [c.469]

    Единственная кольцевая хромосома бактерий содержит ограниченное количество информации и обеспечивает основной метаболизм бактерий, их развитие в благоприятных условиях. При изменении условий выживание популяций бактерий обеспечивается наследственными элементами в форме подвижных, легко передаваемых структур, которые кодируют биосинтез ферментов, необходимых для существования бактерий в изменившихся условиях обитания. Например, один из выделенных штаммов бактерии Рзеи- отопаз оказался способным использовать более 100 видов органических соединений. Бактериальная хромосома не может содержать все гены, ответственные за синтез ферментов, необходимых для деградации такого [c.342]

    Векторы на основе бактериофага Я. Бактериофаг Я. — это вирус, размножающийся на бактериях Е. соИ. За последние 3U лет он стал излюбленным и наиболее изученным объектом генетиков и молекулярных биологов. Геном фага Я. представлен двуцепочечной ДНК размером в 48,5 т.п.о., которая упакована в головку фага в виде линейной молекулы с однонитевыми комплементарными концами длинои в 12 п.о. (липкие концы). После проникновения в клетку липкие концы объединяются и ДНК замыкается в кольцо. Кольцевая ДНК является репликативной формой. Возможность создания векторов на основе фага Я связана с тем его свойством, что гены центральной части (от I до N) несущественны для литического развития. Уже более 20 лет известны способы замещения центральной части фага сегментами бактериальной хромосомы путем определенных генетических манипуляций in vivo. Созданные таким образом специализированные трансдуцирующие фаги хорошо изучены. Идея провести манипуляцию замены центральной части ДНК фага Я in vitro на чужеродные фрагменты послужила поэтому логическим продолжением опытов in vivo. [c.147]


Смотреть страницы где упоминается термин Кольцевая форма генома: [c.214]    [c.275]    [c.170]    [c.170]    [c.231]    [c.100]    [c.60]    [c.195]    [c.417]    [c.239]    [c.243]    [c.316]    [c.261]    [c.277]    [c.305]    [c.89]    [c.290]    [c.341]    [c.204]    [c.311]   
Смотреть главы в:

Современная генетика Т.1 -> Кольцевая форма генома




ПОИСК





Смотрите так же термины и статьи:

Кольцевой ток



© 2025 chem21.info Реклама на сайте