Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Амплификация gs-векторов

    Селекция на амплификацию данного гена в составе рекомбинантной конструкции позволила достичь максимально высокого уровня экспрессии для целого ряда секретируемых белков [1]. В принципе любой из генов, перечисленных в табл. 8.1, можно использовать в качестве маркера амплификации вектора. В разд. 8.1.4 описано применение некоторых из этих маркеров при работе с различными клеточными линиями. [c.241]


    Следовательно, векторы — зто молекулы ДНК, обеспечивающие амплификацию фрагмента (образование дополнительных копий его) в растущей популяции клеток соответствующего вида организма [c.196]

    Векторы для клонирования. Используют для увеличения количества (амплификации) фрагмента ДНК, встроенного в такой вектор, посредством репликации. В этом качестве наиболее часто используются бактериальные плазмиды и фаги. Для клонирования больших фрагментов генома используют векторы — искусственные бактериальные и дрожжевые хромосомы (ВАС и YA ). [c.36]

    Ниже мы рассмотрим детально лишь факторы, имеющие, по-видимому, важное значение для выбора стратегии экспрессии гена. Это стабильность амплифицированных последовательностей в отсутствие селекции, структура вектора и частота амплификации гена. [c.260]

    Причины появления в одних случаях гомогенно окрашенных районов, а в других — DM пока неясны. По-видимому, конструкция вектора здесь не играет роли, а определяющее значение имеют природа клеток-хозяев и характеристика сайта первичней интеграции. Так, например, две наиболее часто применяемые линии клеток хомяка СНО и ВНК-21 обеспечивают преимущественно стабильную амплификацию гена, а у мышиных фибробластов и некоторых линий опухолевых клеток человека преобладает DM-форма [2]. Таким образом, если во главу угла ставить стабильность амплифицированных последовательностей в отсутствие селекции, то предпочтение следует отдать клеткам [c.260]

    Понятие клон определяе гея как большая популяция идентичных молекул, бактерий или клеток— потомков одного предка. Клонирование позволяет получать большое количество идентичных молекул ДНК, которые можно охарактеризовать и использовать в каких-то целях. Метод клонирования основан на том факте, что химерные или гибридные молекулы ДНК могут быть сконструированы в составе векторов для клонирования, к которым относятся бактериальные плазмиды, фаги или космиды, способные к репликации в хозяйских клетках под контролем своих собственных регуляторных элементов. Таким путем добиваются амплификации химерной ДНК. Общая схема процесса клонирования представлена на рис. 36.3. [c.40]

    Удобный вектор, содержащий мышиный ген mtl, показан на рис. 8.3. Hилie приведена методика селекции на амплификацию векторов с генами neo и mtl в клонах, полученных на основе клеток СП0-К1. [c.249]

    В последнее время мы разработали систему амплификации вектора, основанную на использовании гена глутамин-синтетазы [gs) [17]. Глутамин — ключевой продукт многих катаболических и биосинтетических реакций клетки, необходимое количество которого должно либо поставляться в клетку извне — из культуральной среды, либо синтезироваться внутриклеточно из глу-тамата и аммиака в реакции, катализируемой глутамин-синте-тазой. Хотя известно несколько клеточных линий, нуждающихся в экзогенном глутамине (поскольку синтез глутамин-синтетазы у них нарушен), большинство культивируемых клеток, в том числе и клетки СН0-К1, могут обходиться без глутамина, если в среде есть глутамат. В этих условиях, естественно, активность глутамин-синтетазы является жизненно важной для клеткн и угнетение этого фермента специфическим ингибитором метио-нинсульфоксимином (МСКс, MSX) приводит к ее гибели. [c.251]


    Для амплификации вектора можно пспользовать еще один ген — ada [4]. Существует дефектная по адеиозин-дезаминазе лиь ия СКО, однако векторы, экспрессирующие ген ada, могут функционировать как доминантные селективные маркеры в клетках многих типов. [c.256]

    Появление целого ряда различных амплифицируемых векторов, описанных в разд. 8.2, позволило расширить ассортимент клеток, используемых для амплификации генов, и не ограничиваться исходными /г/г -клетками СПО ОИКХ-ВИ. В связи с этим перед исследователем встала проблема выбора клеток и векторной системы. В качестве общего правила можно рекомендовать в первую очередь рассматривать /г/г+-систему, поскольку селекция в с /1/г -клетках СНО обеспечивает высокую частоту трансфекции, а процесс амплификации вектора наиболее полно изучен именно для этих клеток. [c.258]

    Типичный эксперимент по клонированию генов включает следующие этапы. 1. Рестрик-тазное расщепление ДНК, выделенной из организма, который содержит искомый ген. 2. Обработка вектора для клонирования (обычно плазмидного), который может реплицироваться в клетке-хозяине, теми же рестриктазами, которые использовались для расщепления донорной ДНК. 3. Смещивание этих двух образцов ДНК и сшивание фрагментов ДНК-лигазой фага Т4. 4. Трансформация сшитыми молекулами клеток-хозяев. Амплификация рекомбинантной ДНК в трансформированных клетках. [c.78]

    Олигонуклеотид-направленный мутагенез с использованием ПЦР-амплификации Более простой и быстрый метод получения больших количеств мутантных генов, альтернативный системе с использованием фага М13, -сайт-специфический мутагенез в сочетании с полимеразной цепной реакцией (ПЦР). Один из вариантов этого подхода состоит в следующем. Ген-мишень встраивают в плазмидный вектор (рис. 8.4) и помещают препарат в две пробирки. В каждую из них добавляют по два специфических праймера для ПЦР 1 и 2 в одну пробирку, 3 и 4 - в другую. Праймеры 2 и 3 полностью комплементарны одному из участков клонированного гена или прилегающей к нему последовательности, а 1 и 3 комплементарны другому участку, но содержат один некомплементарный нуклеотид и гибридизуются с разными цепями, так что в результате происходит замена обоих нуклеотидов данной пары. Положение сайтов гибридизации праймеров 1 и 2 в одной пробирке и 3 и 4 - в другой таково, что ПЦР-продукты в разных пробирках имеют разные концы. По окончании ПЦР содержимое пробирок объединяют и проводят денатурацию, а затем ренатура-цию. Поскольку концы амплифицированных молекул ДНК из двух пробирок неодинаковы, одноцепочечные ДНК из разных пробирок ассоциируют с образованием кольцевьгх молекул с [c.163]

Рис. 8.6. Случайный мутагенез с использованием вырожденных олигонуклеотидов и ПЦР. Левую и правую части гена-мишени амплифицируют по отдельности с помощью ПЦР. Соответствующие праймеры показаны горизонтальными стрелками. Вырожденные олигонуклеотиды изображены стрелками с тремя зазубринами, каждая из которых отвечает нуклеотиду, не комплементарному соответствующему нуклеотиду в гене-мишени. Амплифици-рованные фрагменты очищают, денатурируют до полного разделения цепей и ренатури-руют. В результате образуются частично двухцепочечные молекулы ДНК, спаренные в области гена-мищени. Их достраивают с помощью ДНК-полимеразы и проводят ПЦР-амплификацию. ПЦР-продукты расщепляют эндонуклеазами рестрикции А и В и встраивают в вектор, обработанный теми же ферментами. Рис. 8.6. <a href="/info/200522">Случайный мутагенез</a> с использованием вырожденных олигонуклеотидов и ПЦР. Левую и <a href="/info/1689465">правую части</a> гена-мишени амплифицируют по отдельности с помощью ПЦР. Соответствующие праймеры показаны горизонтальными стрелками. Вырожденные олигонуклеотиды изображены стрелками с тремя зазубринами, каждая из которых отвечает нуклеотиду, не комплементарному соответствующему нуклеотиду в гене-мишени. Амплифици-рованные фрагменты очищают, денатурируют до <a href="/info/112393">полного разделения</a> цепей и ренатури-руют. В результате образуются частично <a href="/info/1382081">двухцепочечные молекулы</a> ДНК, спаренные в <a href="/info/101813">области гена</a>-мищени. Их достраивают с помощью ДНК-полимеразы и проводят ПЦР-амплификацию. ПЦР-продукты расщепляют <a href="/info/33665">эндонуклеазами рестрикции</a> А и В и встраивают в вектор, обработанный теми же ферментами.
Рис. 20.29. Улавливание экзонов. А. Вектор для улавливания экзонов содержит искусственный ген, состоящий из промотора р, двух экзонов, разделенных интроном, который несет полилинкер, и сайта терминации транскрипции 1. После введения вектора в эукариотическую клетку искусственный ген транскрибируется и из первичного транскрипта удаляется интрон. Для получения ПЦР-продукта определенной длины, который содержит часть обоих экзонов, используют ПЦР-амплификацию обратного транскрипта. Рис. 20.29. <a href="/info/200628">Улавливание экзонов</a>. А. Вектор для <a href="/info/200628">улавливания экзонов</a> содержит искусственный ген, состоящий из промотора р, <a href="/info/1696521">двух</a> экзонов, разделенных интроном, который несет <a href="/info/1386520">полилинкер</a>, и <a href="/info/1409511">сайта терминации</a> транскрипции 1. После <a href="/info/1854961">введения вектора</a> в <a href="/info/104367">эукариотическую клетку</a> искусственный ген транскрибируется и из <a href="/info/33530">первичного транскрипта</a> <a href="/info/1633456">удаляется интрон</a>. Для получения ПЦР-<a href="/info/159340">продукта определенной</a> длины, который содержит часть обоих экзонов, используют ПЦР-<a href="/info/1404097">амплификацию обратного</a> транскрипта.
    Вы познакомились с основными приемами и способами модификации генома микробных, растительных и животных клеток. Для биотехнологии большое значение представляет создание суперпродуцентов на основе микробных и растительных клеток, способных синтезировать любые белковые вещества, имеющие практическое значение. Генная инженерия дает возможность не только создания новых, отсутствующих в природе продуцентов целевых продуктов, но и существенного увеличения эффективности уже существующих производств. Например, способом повышения продуктивности того или иного продуцента является амплификация, т е. увеличение числа копий генов, кодирующих целевой продукт. Можно еще раз подчеркнуть огромные возможности генной инженерии для создания вакцин на основе синтетических антигенов, трансгенных растений с заранее заданными свойствами, а также транс-генных животных. В дополнение следует отметить использование методов генной инженерии в диагностике некоторых заболеваний, например вирусных инфекций, а также для лечения ряда наследственных заболеваний. В связи с этим появился даже новый термин генная терапия. Для лечения наследственных болезней необходимо дефектный ген заменить на нормально функционирующий. В качестве векторов обычно используют РНК-ретровирусы, которые вводятся в стволовые клетки костного мозга. [c.507]


    Таким образом, работы по увеличению продуктивности растений, выращиваемых для получения энергии (биомассы), в опытах in vitro будут успешными, если мы 1) установим генетические пределы продуктивности 2) выявим индивидуальные гены, ответственные за это свойство (признаки) 3) выделим ДНК или РНК, кодирующие эти признаки 4) встроим их при помощи ферментов рестрикции и лигаз в подходящий вектор для амплификации в бактериях 5) введем накопленный таким путем материал в вектор, подходящий для его переноса в желаемый вид растений 6) стабилизируем введенную ДНК в геноме нового хозяина таким образом, чтобы она экспрессировалась как доминантный признак, наследуемый по законам Менделя 7) разработаем методы скрининга для выявления таких измененных растении 8) будем применять альтернативные подходы, используя для увеличения изменчивости и менее сне- [c.50]

    Альтернативные методы скрининга космидных библиотек, описанные в гл. 3, предполагают селекцию космидных клонов с использованием феномена гомологичной рекомбинации in vivo. Остальные главы книги посвящены вопросам, связанным с экспрессией клонированных генов. Для многих белков млекопитающих удалось осуществить высокопродуктивную внутриклеточную экспрессию в Е. oli. Однако гетерологические белки, локализующиеся в цитоплазме, часто образуют трудно растворимые агрегаты, что значительно осложняет получение нативного продукта. В гл. 4 описаны эффективные способы выделения активных растворимых продуктов из нерастворимых белков цитоплазмы Е. соИ. Вероятность деградации специфическими бактериальными протеиназами многих эукариотических белков, синтезируемых в Е. oli, может быть существенно снижена, если их экспрессировать в виде гибридных белков. Такие составные белки, в которых бактериальный компонент обычно представлен -галактозидазой, можно использовать в качестве иммуногенов для получения антисыворотки и моноклональных антител к клонированному эукариотическому белковому домену. Эти вопросы >ассматриваются в двух главах — одна посвящена получению поликлональной антисыворотки, а другая — методам гибридной технологии. В последующих главах книги описаны современные эукариотические экспрессирующие системы в гл. 7 — дрожжевая, далее в трех главах — системы на основе культивируемых клеток млекопитающих и трансгенные животные. В частности, описана система экспрессии с использованием векторов, которые несут гены, обеспечивающие возможность их индуцибельной амплификации это позволяет снимать токсическое действие антибиотиков, введенных в культуральную среду. Клонированные в таком векторе гены также [c.8]

    Упаковку космид in vivo можно применять при многих видах работ с космидными клонами и библиотеками. Основное достоинство данного подхода при амплификации библиотек — простота работы с упакованными космидами. Как и библиотеки, полученные на основе Я-векторов, космиды хорошо хранятся при 4 °С в виде фаговых суспензий, что позволяет легко оттитровать космидный препарат. При комнатной температуре препарат стабилен и хорошо выдерживает транспортировку. [c.76]

    Использование с этой целью векторов ВРУ-типа удобно в том отношении, что довольно быстро устанавливается множество копий вируса (до нескольких сотен на клетку). Этим объясняется успешное применение вектора на основе ВРУ для высокоэффективной экспрессии многих белков [1]. Недостатки вирусных векторов связаны с ограниченным набором клеточных линий, в которых возможна репликация вектора, а уровень экспрессии и поддержание эписомного состояния конструкции в целом зависят кроме всего прочего и от конкретных последовательностей ДНК, клонированных в векторе. Альтернативный способ увеличения числа копий, описанный в данной главе, предусматривает селекцию клеток на амплификацию последовательностей вектора после его интеграции в ДНК клетки-хозяина такой подход не имеет принципиальных ограничений на использование того или иного типа клеток. При этом подходе можно выбрать клетки с любыми нужными свойствами, например способностью определенным образом модифицировать белковый продукт или узнавать конкретную регуляторную последовательность ДНК. [c.239]

    Во всех известных на сегодняшний день случаях не только геномные копии, но и кДНК любого из этих генов в составе экспрессирующего вектора способны к амплификации в трансфицированных культивируемых клетках (см., например, [6—9,11,12]). Следовательно, вряд ли существует некая специфическая последовательность ДНК, ответственная за амплификацию. И хотя механизм этого явления изучен недостаточно полно, можно все-таки предположить, что в ходе селекции происходит лишь фиксирование определенных случайных событий амплификации, возникающих независимо с определенной частотой во всех пролиферирующих клеточных популяциях. Одна из гипотез связывает эти события с ошибками репликации ДНК [2]. С этой гипотезой согласуется наблюдение о том, что амплифицирующиеся участки хромосомной ДНК во всех случаях значительно превышают по размеру собственно кодирующую последовательность фермента (часто амплифицируются фрагменты длиной более 1000 т. п.н.). Точно так же при селекции на амплификацию клонированных генов увеличивается число копий и других последовательностей вектора — они тоже вовлекаются в амплификацию. [c.240]

    Ген металлотионеина представляет собой еще один амплифицируемый маркер, работа с которым подробно освещена в данной главе. Особенно хорошо изучен один из двух генов мыши m-mtl, этот ген невелик, и его геномную копию удобно клонировать в плазмидных векторах [8]. Попытки использовать данный ген в качестве доминантного селективного маркера окончились неудачей (кроме векторов на основе ВРУ [19]). Поэтому для первичной селекции требуется дополнительный маркерньп ген. Эти недостатки компенсируются в ряде случаев простым и недорогим методом селекции клеток на амплификацию мышиного гена rn-mtl, хотя число копий на клетку в этой системе не превышает 100. [c.244]

    В разд. 8.2 приведены методики первичной селекции и последующей амплификации генов в векторах на основе dhfr, ada, gs и m-mtl. В разд. 8.3 обсуждаются факторы, которые следует учитывать при выборе стратегии амплификации. В разд. 8.4 onsi anbi методы аналг13а амплификации генов. [c.245]

    Векторы, несущие ген dhfr, имеют то преимущество, что провирусные последовательности можно подвергнуть амплификации путем метотрексатной селекции это позволяет повысить уровень экспрессии и титр вирусных препаратов [21]. Тем пе менее наибольшее распространение в качестве доминантных маркеров получили гены, обеспечивающие селективную лекарственную устойчивость — такие, как neo или hgr. Это объясняется тем, что они хорошо сочетаются со многими клеточными типами и не требуют специальной среды для селекции. Во всех известных конструкциях векторов для спаренных генов ген, расположенный ближе к 5 -LTR, экспрессируется в составе геномного вирусного РНК-транскрипта. Для обеспечения экспрессии более удаленного гена применяют два разных методических приема это либо экспрессия в составе отдельной субгеномной РНК, образующейся в результате сплайсинга вирусной РНК, либо использование внутреннего промотора, введенного в состав вектора. [c.281]

    Все рассмотренные выше методы селекции продуцентов биологически активных веществ сегодня, в период интенсивного развития методов генной инженерии, называют традиционными методами. Эти методы в прошедшие 30 лет в огромной мере содействовали созданию микробиологической промышленности антибиотиков, аминокислот, ферментов, витаминов и других практически важных веществ. Исчерпали ли традиционные методы свои возможности Нам кажется, думать так преждевременно, как и надеяться на то, что генная инженерия в ближайшее время сможет быть применена для создания и улучшения обширного круга принадлежащих к разным таксономическим группам продуцентов, которыми располагает сейчас микробиологическая промышленность. Даже более реальная возможность использовать иа основе генноинженерных методов в качестве продуцентов микроорганизмы, для которых эти методы наиболее отработаны, например E sheri hia oli, едва ли удовлетворит промышленность числом продуктов микробного синтеза. В связи с этим очень важно для старых перспективных в промышленном отношении микроорганизмов, помимо совершенствования методов отбора нужного типа мутантов, развивать методы генетического обмена на основе слияния протопластов, трансдукции, трансформации хромосомной и плазмидной ДНК, которые расширяют возможности традиционных методов селекции. Вместе с тем у промышленных микроорганизмов все шире проводится поиск плазмид и предпринимаются попытки их использования в качестве векторов при переносе генетического материала, его клонировании и амплификации. Эти исследования важны для понимания генетического контроля сложных процессов синтеза, таких, иапример, как синтез антибиотиков, для выявления узких мест в биосинтезе многих других продуктов. Одновременно они приближают промышленные микроорганизмы к объектам генной инженерии. Методология генной инженерии постоянно совершенствуется и расширяет свои возможности. В таком успешном встречном развитии разных методов и их слиянии на все большем числе продуцентов можно представить себе ближайшее будущее селекции микроорганизмов, призванной обеспечить промышленность высокопродуктивными штаммами. [c.95]

    Явление амплификации сегментов хромосомной ДНК у актиномицетов может быть использовано для конструирования интегративных амплифицирующихся векторов, в которых чужеродный ген включается внутрь АП. [c.169]

    Фрагменты, гомологичные как правому, так и левому концу Т-ДНК. Такие фрагменты, вероятно, образуются вследствие тандемных вставок (Т), которые, как полагают, возникают в-результате предшествующей встраиванию конкатемеризации Т-ДНК. Вместе с тем составные фрагменты могут образоваться при встраивании отдельных фрагментов Т-ДНК очень близко друг к другу и в одной и той же ориентации либо возникают в результате амплификации после встраивания. Тандемные вставки чаще образуются при использовании бинарных векторов. Перевернутые тандемные вставки также образуют составные [c.314]


Смотреть страницы где упоминается термин Амплификация gs-векторов: [c.263]    [c.150]    [c.391]    [c.456]    [c.42]    [c.244]    [c.244]    [c.245]    [c.248]    [c.251]    [c.255]    [c.255]    [c.255]    [c.259]    [c.264]    [c.186]    [c.176]    [c.178]    [c.178]    [c.179]    [c.180]   
Смотреть главы в:

Новое в клонировании ДНК Методы -> Амплификация gs-векторов




ПОИСК





Смотрите так же термины и статьи:

Вектор



© 2025 chem21.info Реклама на сайте