Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алканы газообразные

    В большинстве названных книг, а также в указанных ранее таблицах Ландольта — Бернштейна, за некоторыми незначительными отклонениями, приведены значения следующих функций при температурах от 298,15 до 1000 или 1500 К Нт — Яо, 8т, С°р,т, вт — Н1)1т, (Нт — Н1), АЯ, lgK/ для газообразного состояния— нор.мальных алканов до Сго, нормальных алкенов-1 и алки-нов-1, нормальных алкилпроизводных бензола, циклопентана, цикло-гексана, изомерных алканов до Се и некоторых других углеводородов, а также наиболее часто встречающихся простейших соединений и простых веществ (графит, Нг, Ог, СО, СО2, Н2О и др.). [c.80]


    В табл. VI, 5 приведены инкременты группы СНг основных термодинамических функций высших алканов нормального строения в газообразном состоянии при температурах до 1500 К и в табл. VI, 6 — значения тех же функций для н-гептана. Сочетание данных этих двух таблиц дает возможность легко определять значения этих функций для высших н-алканов при температурах до 1500 К. В табл. VI, 7 и VI, 8 подобные же данные приведены для [c.218]

    Инкременты группы №2 различных термодинамических функций для высших алканов нормального строения (п>7) в газообразном состоянии по данным [c.219]

    Инкременты группы СН параметров реакций образования и теплот атомизации для высших алканов нормального строения (я >7) в газообразном состоянии по данным,  [c.220]

    Закономерности, в той или другой степени подобные описанным, наблюдаются и для многих других свойств органических соединений в газообразном пли в жидком состоянии. Сюда относятся, например, мольная рефракция, теплота испарения, логарифм давления насыщенного пара и др. Поскольку каждая из таких величин для алканов, обладающих аналогичным строением, может быть выражена приближенно как линейная функция числа углеродных атомов в молекуле, то и связь между этими свойствами или соответствующими функциями может быть выражена в линейной форме. В. М. Татевский показал линейный характер такой связи, в частности, между теплотой образования алкана ЛЯ 298 логарифмом давления насыщенного пара при 60 °С и определил постоянные соответствующих уравнений для некоторых групп алканов. В табл. VI, 18 приведены постоянные уравнения вида [c.226]

    Рассматриваемый метод дает возможность рассчитывать теплоту образования (ДЯ , 293) данного алкана в газообразном состоянии из простых веществ, атомарную теплоту образования (дя .гэв) теплоту сгорания (ДЯс, 2Э8)и с несколько большей погрешностью Д0° , 298. в табл. VI, 20 приведены инкременты Pi,j, относящиеся к различным видам связи С—С в алканах, для расчетов АЯ , 293 дя , 298, (для газообразного и для жидкого состояний) [c.229]

    Существование таких семейств изомеров, обладающих практически одинаковыми АЯ° (а также одинаковыми АЯ и АЯ°), как показали В. М. Татевский и С. С. Яровой облегчает расчет указанных величин для различных изомеров. Так, для декана имеется 75 изомеров, но число семейств, различающихся по набору разных видов С — С-связей, равно всего 50, а для додекана, имеющего 355 изомеров, число семейств равно 137. В табл. VI, 21 приведены для различных ундеканов рассчитанные таким путем значения АЯ , АЯс и AGf для 298,15 К, причем параметры реакций образования отнесены к газообразному состоянию алкана, а теплоты сгорания даны для жидкого и для газообразного состояний. Описанный метод был использован В. М. Татевским (частично совместно с С. С. Яровым) для построения аналогичных систем расчета и других свойств алканов теплоты испарения при разных температурах, мольного объема, рефракции, логарифма давления насыщенного пара, констант равновесия в реакциях образования из простых веществ, магнитной восприимчивости. Было описано также обобщение метода для соединений других классов и предложено квантово-механическое обоснование его [c.232]


    И подставляя в нее указанные значения коэффициентов п и приведенные в табл. VI, 25 значения соответствующих инкрементов для АЯ/, 298 газообразных алканов, получаем [c.245]

    И значениями инкрементов / для AЯf. 29а газообразных алканов, получаем  [c.248]

    В табл. VI, 26 сопоставлены экспериментальные и рассчитанные значения АЯ . 298 различных алканов в газообразном и жидком состояниях. В табл. VI, 27 сопоставлены рассчитанные и экспери- [c.248]

    На рис. VII, 7 показано соотношение между теплотами образования (дя,, 29з) н-алканов и н-алкенов в газообразном состоянии по данным В то время как зависимость ДЯf, 293 от числа атомов углерода (п) становится линейной только начиная с п = 6, зависимость тех же величин для двух гомологических рядов в форме, представленной на рис. VII, 7, вследствие примерно одинаковых отклонений от линейной зависимости будет иметь линейный характер и для низших гомологов (обычно все же кроме первого и иногда второго члена). Подобные же соотношения характерны и для теплот сгорания. [c.300]

    Муассан (1896 г.), разлагая водой карбиды урана, получил, кроме газообразных, жидкие и даже твердые углеводороды, которые, очевидно, могли образоваться в результате радиационной полимеризации этилена и других алканов. [c.28]

    Асфальтены, выделенные из нефтя и.пи ее тяжелых остатков осаждением нормальными алканами (С5—Сз), представляют собой твердые аморфные вещества, которые при 200—300°С переходят в вязкое пластическое состояние, а при 290—300°С разлагаются с выделением жидких и газообразных продуктов и твердого коксового остатка. [c.210]

    Для расчета вязкости индивидуальных углеводородных газов применяется формула ц=7 (6,6— —2,25 lg М) 10- , где (А — динамическая вязкость, Па-с Т — температура, К М — молекулярная масса. На рис. 1.4 приведены данные о вязкости газообразных алканов, а на рис. 1.5 — различных газов (воздух, кислород, оксиды азота и углерода, сероводород, во- [c.13]

Рис. 1.4. Вязкость газообразных алканов при 0,1 МПа Рис. 1.4. <a href="/info/440688">Вязкость газообразных</a> алканов при 0,1 МПа
    Состав газообразного топлива зависит от его природы, происхождения и способа получения. Природные газы состоят преимущественно из метана с незначительным содержанием других низших алканов, оксида углерода и азота. В попутных газах содержится значительное количество алканов от этана до пентана и выше, при относительно низком содержании метана. Газы газоконденсатных месторождений по составу занимают промежуточное место. Содержание конденсата в них колеб- [c.191]

    Во второй главе дан обзор существующих данных о составе продуктов термического крекинга индивидуальных газообразных алканов. Наряду с этим приведены результаты исследований автора и сотрудников по изучению зависимости состава продуктов термического крекинга газообразных алканов от температуры, давления и глубины разложения, которые позволяют сделать заключение о самотормозящемся характере распада, существовании предела самоторможения, остаточной радикально-цепной реакции на пределе самоторможения, усилении реакции деметанизации с увеличением глубины разложения и реакций изомеризации радикалов,, обусловливающих наблюдаемые изменения в составе продуктов. [c.9]

    Результаты опытов по изучению влияния добавок тетраметилэтилена на крекинг газообразных алканов качественно находится в хорошем согласии с выводами развитой выше единой теории торможения и ускорения реакций крекинга (70]. [c.39]

    СОСТАВ ПРОДУКТОВ и МЕХАНИЗМ ТЕРМИЧЕСКОГО КРЕКИНГА ГАЗООБРАЗНЫХ АЛКАНОВ [c.77]

    Процесс, термического алкилирования обычно применялся в нефтепереработке для алкилирования нормальных газообразных алканов газообразными алкенами с целью получения жидких изоалканов. [c.58]

    На основании работ Россини с сотрудниками [1] имеется возможность вычислять с большой точностью стандартные теплоты образования при 25° С газообразных и жидких к-алканов, газообразных 1-алкенов, н-алкилциклопентанов, н-алкилциклогексанов и н-алкилбензолов. Ниже приведены уравнения, составленные на основании лучших калориметрических исследований при помощи метода наименьших квадратов. В эти уравнения включена величина, [c.36]

    Характерно, что чем выше температура пиролиза бутана, тем больше отодвигается место его распада по С —С —связи к краю молекулы. На это указывает непрерывное возрастание содержания метана в газообразных продуктах реакции вплоть до 900 °С. Аналогичные реакции распада характерны для термолиза более высо — комолекулярных алканов. Для них при умеренных температурах (400 — 500 °С) наблюдается симметричный разрыв молекулы с обра — зованием олефина и парафина приблизительно одинаковой молекулярной массы. При более высоких температурах в продуктах их термолиза обнаруживаются низшие алканы и высокомолекулярные алкены и арены, вероятно, как результат вторичных реакций. [c.32]


    Металлы VHI группы периодической системы элементов различным образом ведут себя в качестве катализаторов гидрогенолиза циклопентанов. Платиновые катализаторы являются весьма специфическими в присутствии этого металла водород, присоединяясь к двум соседним атомам углерода, расщепляет С—С-связь кольца практически без каких бы то ни было побочных реакций. Соверщенно иначе, и в то же время по-разному, ведут себя в этой реакции Pd- и Ni-катализаторы. Б. А. Казанским с сотр. показано, что Pd/ не активен в реакциях гидрогенолиза циклопентана и его гомологов [216—218], в то время как над Ni/A Oa [142, 218, 219] происходит глубокий распад циклопентанов с преимущественным образованием метана. Исследован [138, 220] гидрогенолиз пятичленного цикла над Pt- и Ni-ка-тализаторами при гидрогенолизе н-бутилциклопентана над Ni/AbOa обнаружено большое количество нпзкомо-лекулярных углеводородов [138]. Аналогично при гидрогенолизе метилциклопентана над тем же катализатором при 240°С образовывалось до 40% газообразных алканов [142]. Подробно изучен [218] гидрогенолиз самого циклопентана над Ni-катализатором. Прн 250 около 30% циклопентана превращалось в метан, а жидкий катализат почти целиком состоял из исходного циклопентана. Таким образом, Ni-катализаторы оказались далеко не столь селективными при гидрогенолизе циклопентанового кольца, как Pt/ . Такое же жесткое действие на циклопентан и метилциклопентан оказывают и [c.160]

    Стандартный метод [345], используемый в США, применим к маслам нефтяного происхождения для использования в кабелях, трансформаторах, автоматических масляных выключателях и т. д. Масла с высокой степенью чистоты показывают то же самое значение при стандартных условиях от 30 до 35 кв. Для алканов [346] было показано, что диэлектрическая сила линейно увеличивается с плотностью жидкости. Для и-гептана было найдено соотношение между диэлектрической силой и изменением плотности с телтера-турой. Существует много причин, по которой диэлектрическая сила изолятора ослабевает самые важные, по-видимому, связаны с присутствием определенных примесей [347], полученных в результате коррозии, окисления, термического или электрического крекинга или газообразного разряда попадание воды является общеизвестной причиной аварий. [c.206]

    Инкременты группы СНг теплот образования 2-метилалканов и 2,2-диметилалканов в газообразном состоянии и отношения аналогичных инкрементов для н- и азо-алканов, рассчитанные по данным [c.225]

    В работе имеются такие же системы инкрементов для расчета мольной рефракции и мольного объема алканов в жидком состоянии для 298,15 К, а в работе — система инкрементов для расчета 298 газообразных 2-метилалканов. [c.244]

    А. Л. Сейфер и Е. А. Смоленский указывают, что при отсутствии значений /4.4,2, /4.3,3, /4,4,3 и /4.4,4 для газообразных алканов или /4,4.4 для жидких алканов этими составляющими в расчетах можно пренебречь, так как они должны быть достаточно малы. Едва ли можно присоединиться к э,той рекомендации для всех названных случаев, так как число сочетаний связей, включающих данную группировку атомов, может быть не столь малым. Так, при расчете для 2,2,4,4-тетраметилпентана нужно учитывать 9 сочетаний связей, содержащих группировку С(4)—С(2)—С(4), ибо каждая из трех метиль-ных групп левой части молекулы может быть связана с каждой из трех метильных групп правой части. Поэтому хотя инкремент /4.4.2, отвечающий такому сочетанию, составляет для AЯf. гэвж всего 0,5045, но 9/4.4.2 = 4,54 ккал/моль, что отнюдь не так мало. [c.249]

    В табл. VI, 25 приведены также инкременты для расчета 5298 и ЛGf. 298 алканов в газообразном состоянии. Зависимость энтропии от степени симметрии молекулы и энергетических барьеров внутреннего вращения не дает возможность ожидать хорошей применимости формальных аддитивных схем расчета. Однако рассчитанные таким путем значения энтропии большей частью достаточно хорошо согласуются со справочными (табл. VI, 26) и могут быть использованы для многих практических целей. Вместе с тем расхождения Иа 1 и даже на 2 кал/(К-моль) при отсутствии возможности определить, где они появляются, будут, естественно, ограничивать использование этого метода для расчета энтропии. В таких случаях, вероятно, лучше было бы построить систему инкрементов для расчета не всей энтропии Згзз, а суммы составляющих ее за вычетом члена, определяемого числом симметрии, и, быть может, члена, выражающего поправку на стесненность некоторых форм внутреннего вращения. [c.249]

    И 2,2,2 ДЛЯ любой ИЗ указэнных величин. Отсюда изменения ДЯ , 298 при введении СНг- группы для нормальных алканов в газообразном и жидком состояниях определяются равными —4,9300 и —6,1100 ккал/моль, а изменения 293 и ДО/, 293 для них же в газообразном состоянии определяются равными 9,310 кал/(К-моль) и 2,0099 ккал/моль, что применимо к алканам, содержащим не менее пяти атомов углерода. Эти результаты полностью совпадают со значениями инкрементов группы СНг, приведенными в табл. VI, 4, VI, 5 и VI, . [c.250]

    В конце тридцатых и начале сороковых годов появляются зкспериментальные работы по крекингу алканов, в которых изучают не только состав продуктов, но также кинетику термического распада индивидуальных алканов с точностью, достаточной для суждения о скорости крекинга и характере управляющих им кинетических закономерностей. В этих работах [14—20], в которых режим эксперимента регистрировали точно по сравению с ранними исследованиями [4], была изучена кинетика термического распада газообразных алканов в довольно широком интервале температуры (450 — 700°С) при атмосферном давлении, в реакторах из различных материалов (кварц, пирекс, медь, железо, монель-металл и др.), пустых или набитых кусочками материала самих реакторов. Большинство кинетических опытов были проведены динамическим методом (в струе), с предварительным подогревом газов или паров в предреакторе, малом времени контакта в реакционной зоне, с последующим химическим анализом продуктов в каждом из опытов, которые отличались, по температуре или по времени контакта. Более подробное изложение выше цитированных работ можно найти в Успехах химии [21] и кандидятской диссертации автора [221. [c.19]

    С другой стороны, изучение реакций атомарного дейтери г с газообразными алканами дало более точные данные для вычисления энергий активации элементарных радикальных реакций замещения [59, 60]. В этих работах обмен водорода на дейтерий с образованием дейтеро-замещенных алканов был применен как метод изучения механизма элементарных реакций, при которых возникают дейтеро-соединения, позволяющие следить за отдельной реакцией в сложном процессе. [c.31]


Смотреть страницы где упоминается термин Алканы газообразные: [c.310]    [c.333]    [c.863]    [c.77]    [c.382]    [c.217]    [c.223]    [c.224]    [c.226]    [c.230]    [c.244]    [c.244]    [c.248]    [c.250]    [c.31]    [c.37]    [c.7]    [c.35]    [c.64]    [c.65]   
Химия нефти и газа (1996) -- [ c.145 ]




ПОИСК





Смотрите так же термины и статьи:

Алканы



© 2025 chem21.info Реклама на сайте