Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутены пиролиз

    Бутадиен в СССР получают из этанола, одно- и двухстадийным дегидрированием н-бутана, выделением нз газов пиролиза и окислительным дегидрированием н-бутиленов. Производство его энергоемко. Расход топливно-энергетических ресурсов на 1 т бутадиена при контактном разложении этилового спирта составляет 1,77 т у. т., двухстадийном дегидрировании н-бутана — 5,67 одностадийном дегидрировании н-бутана—1,88, выделении из пиролизной фракции — 0,3 т у. т. Внедрение в производственном объединении Нижнекамскнефтехим окислительного дегидрирования позволяет экономить ежегодно 500 тыс. т топлива. [c.175]


    Олефины, содержащиеся в продуктах крекинга и особенно в крекинг-газах, являются хорошим и легко доступным для производства сырьем. Для увеличения ресурсов олефинового сырья парафины или более тяжелые фракции специально подвергают крекированию (пиролизу). Таким образом, этилен получается в результате крекинга различных газов С2—С4 (этан, пропан, бутан) и жидких фракций (газойль, лигроин и мазут). Пропилен получается при термическом и каталитическом крекинге лигроинов и газойлей, а также из пропана и бутана. [c.577]

    Пиролиз углеводородов. Механизм Райса—Герцфельда. Разложение бутана [c.302]

    Основными методами получения бутадиена в настоящее время в мировой практике являются двухстадийное дегидрирование бутана, одностадийное, дегидрирование бутана под вакуумом, дегидрирование бутиленов и извлечение из С4-фракции пиролиза низкооктановых топлив. Последний способ по технико-экономическим показателям имеет значительные преимущества перед другими методами синтеза бутадиена. [c.15]

    Кроме получения олефинов термическим дегидрированием этана и крекингом, вернее каталитическим дегидрированием пропана и бутана, возможен еще пиролиз высокомолекулярных углеводородов, таких как тяжелый бензин и газойли. Этот пиролиз протекает со значительным образованием кокса. Чтобы уменьшить затруднения, связанные с образованием кокса, имеются три пути  [c.35]

Рис. 22. Темп(-ратурпая зависимость состава конечных продуктов пиролиза бутана. Рис. 22. Темп(-ратурпая зависимость состава <a href="/info/17660">конечных продуктов</a> пиролиза бутана.
    Упражнение .18. Пиролиз бутана — гомогенная реакция, описываемая стехиометрнческим уравнением [c.101]

    Для увеличения ресурсов непредельных углеводородов можно подвергать насыщенные углеводороды газа (этан, пропан, бутаны) пиролизу илп дегидрогенизации. [c.348]

    В тех же условиях в продуктах пиролиза этилена содержатся высокомолекулярные олефины — продукт сополимеризации бути — ленов с этиленом. При температурах 600 °С и выше в продуктах термолиза этилена появляются бутадиен и водород в результате дегидрирования бутена—1. [c.32]


    Энергозатраты Пиролиз пропана Пиролиз -бутана Пиролиз бензина атмосфер- ного вакуум- ного [c.94]

    Технический формалин представляет собой водный раствор с содержанием формальдегида 37— 40% (масс.), содержание метилового спирта в нем не более 1% (масс.). В качестве источника изобутилена могут быть использованы фракции 04 различного происхождения продукты дегидрирования изо-бутана, пиролиза и крекинга нефтяных фракций и т д. Содержание изобутилена в исходной фракции пе менее 40% (масс.). [c.23]

    При газофазном нитровании изобутана выход третичного продукта замещения гораздо меньше, чем при хлорировании, потому что высокая температура реакции (около 420°) способствует частичному пиролизу трег-нитробутана, в то время как первичный изомер, как и во всех остальных случаях, термически заметно более стабилен. С другой стороны, нитрование изобутана в запаянной ампуле при 150° дает только третичный изомер [75]. Состав продуктов нитрования н-бутана сильно зависит от температуры (см. табл. 147) [87]. [c.568]

    В процессе пиролиза н —бутана преобладают следующие 2 реакции его распада  [c.31]

    Первичные продукты пиролиза бутана [53] имеют следующий состав (в лоль/100 моль прореагировавшего бутана)  [c.15]

    В полученной при пиролизе бутана фракции Сд почти отсутствует пропан. Это является большим преимуществом, так как отпадает необходимость в разделении пропана и пропилена и можно получать очень чистый пропилен. [c.15]

    В промышленности хорошо зарекомендовал себя процесс пиролиза бутана в реакторе с кварцевым теплоносителем. В результате пиролиза 100 кг бутана при 943 °С наряду с другими продуктами получается 44,1 кг этилена и 12,5 кг пропилена конверсия составляет 91%. Если при пиролизе основное значение придается пропилену, то целесообразно проводить процесс в трубчатой печи. [c.15]

    Системы с поддающимся определению конечным числом компонентов от трех и более называются многокомпонентными. Примерами подобного рода углеводородных систем являются природный нефтяной газ, газы термического и каталитического крекинга, смесь газов пиролиза, контактные газы установок дегидрогенизации н-бутана или этилбензола. Примеры эти можно было бы умножить, однако достаточно ограничиться замечанием, что число компонентов в таких системах сравнительно невелико и редко превосходит два десятка, чаще нie всего бывает значительно меньше. [c.344]

    Поведение к-бутана и изобутана аналогично реакциям пропана в том смысле, что они слишком быстро дают вторичные и третичные продукты реакции, чтобы можно было изучать начальную стадию разложения. Это имеет место при всех температурах свыше 1000° С, т. е. в тех случаях, когда ацетилен является основным продуктом. Отношение К/К для реакций образования ацетилена из пропилена или этилена примерно то же, что и при пиролизе пропана это указывает на то, что природа исходного реагента не имеет особенно большого влияния на скорость образования ацетилена, если исходный реагент является углеводородом, содержащим 3 или более атома углерода. В связи с этим получение ацетилена пз пропана и бутанов будет рассматриваться скорее с точки зрения выхода ацетилена, чем расхода исходного сырья. [c.63]

Рис. 8. Пиролиз н-бутана при температуре 1100° С и давлении Рис. 8. Пиролиз н-бутана при температуре 1100° С и давлении
    Промышленное применение. Как было показано, ацетилен образуется при пиролизе углеводородов от метана до бутана . Следует под- [c.89]

    В области высоких температур, где скорость реакций велика, а необходимое время пребывания продуктов реакции в зоне реакции — мало, можно ожидать достаточно хорошего совпадения вычисленных и опытных величин. Во всяком случае кривые рис. 1 определяют общие тенденции процесса пиролиза этана, пропана и бутана и зависимость процесса от условий (температуры и давления). [c.288]

    Окисление более тяжелых углеводородов, начиная с гексана, приводит к образованию весьма сложной смеси продуктов, из которой очень трудно выделить индивидуальные соединения. Поэтому углеводороды тяжелее Се подвергают окислению только в том случае, когда продукт реакции находит применение непосредственно в виде смеси. В самом деле, даже некаталитическое окисление пропана и бутана в паровой фазе при 270—350 " С и давлении от 3,5 до 200 атм приводит к получению очень широкой гаммы продуктов, что наглядно иллюстрируется табл. ХП1 . Помимо продуктов, перечисленных в этой таблице, реакционная смесь содержит кислоты Сх—С4, спирты Сг—С,, кетоны С3—С,, окись этилена, простые эфиры, ацетали, альдоли и т. д. [306, 307]. Соотношение между отдельными соединениями и классами соединений в реакционной смеси может колебаться в широких пределах и зависит от условий реакции. Наибольший выход продуктов окисления соответствует температуре реакции 150—250° С. При более высоких температурах интенсивнее протекают не только реакции окисления, но и реакции крекинга и пиролиза. Так, образование бутиленов достигает максимума нри 375° С, а образование этилена и пропилена — при 700° С (давление во всех случаях атмосферное). С ростом температуры одновременно происходит падение выходов продуктов окисления [307]. [c.585]


    Для экономичного получения непредельных углеводородов пиролиз бутана целесообразно вести с высокими (до 90%) степенями превраш ения за один проход смеси через реакционный аппарат. [c.41]

    При пиролизе бутана образуются значительные количества кокса, который можно удалять периодически. Для снижения коксообразования прн пиролизе бутана рекомендуется добавлять водяной пар. [c.41]

    Компонент 0 sS Я 3 s gss O 0 O 1. -Э- ж о О. - 2 = с = S.-p- я 2 S 5il ГЛ -v- я P S Ro с S ii G Л O ГЗ TO la с e Пиролиз п-бутана Пиролиз тяжелых нефтяных остатков Пиро газово1 бензин [c.342]

    При пиролизе бутана (рис. 22) наибольшее содергкание олефинов наблюдается при значительно более низких температурах — при 690°. Это указывает на меньшую термическую стабильность бутана. Наибольшая концентрация этилена наблюдается уже ири 750°. Реакция дегидрирования [c.51]

    Большую роль играет дегидрирование. этана и бутана в этилен и бутнлен. Дегидрирование пропана в промышленном масштабе осуществляется незначительно, так как пропилен, образующийся совместно с другими углеводородами прн других процессах, в частности при пиролизе, полностью покрывает потребность в данном продукте в большинстве промышленных стран. Поэтому термическое и каталитическое дегидрирование пропана описывается вкратце. Правда, пропилен, получаемый путем каталитического дегидрирования пропана, дешевле образующегося при пиролизе. [c.10]

    Прп промышленном пиролизе бутана происходит расщепление его на этилен и этан, а также на пропилен и метан. Дегидрирование до бутилена или бутадиена происходит в гораздо меньшем масштабе по сравнению с образованнед пропилена. Это становится понятным при рассмотрении теплового эффекта отдельных реакций  [c.14]

    Фролих [52] исследовал состав конечного газа при пиролизе бутана в зависимости от температуры. Он установил, что общее содержание олефинов будет максимальным при 690 °С, в то время как максимальный выход пропилена наблюдается уже при 650 °С. [c.14]

    В литературе описаны различные разновидности пиролиза бутана среди них особый интерес представляет каталитический метод при температуре 600 °С в присутствии катализатора 8102 — гОз — А12О3 [54]. Кроме того, описаны методы пиролиза в присутствии кислорода [55] или водяного пара [56]. [c.15]

    Характерно, что чем выше температура пиролиза бутана, тем больше отодвигается место его распада по С —С —связи к краю молекулы. На это указывает непрерывное возрастание содержания метана в газообразных продуктах реакции вплоть до 900 °С. Аналогичные реакции распада характерны для термолиза более высо — комолекулярных алканов. Для них при умеренных температурах (400 — 500 °С) наблюдается симметричный разрыв молекулы с обра — зованием олефина и парафина приблизительно одинаковой молекулярной массы. При более высоких температурах в продуктах их термолиза обнаруживаются низшие алканы и высокомолекулярные алкены и арены, вероятно, как результат вторичных реакций. [c.32]

    Стаббс и Хиншельвуд [42] обнаружили увеличение скорости пиролиза н-бутана па 50% при изменении давления от 6 до 50 см рт. ст.. при 530°. [c.305]

    На нервом этапе пиролиза (до 20"о) отношение (111ВР)/(СНзСОСНз) имеет среднюю величину, равную примерно 4,5. Если в ценной реакции значением Е( и) можно пренебречь (т. е. оно меньше 0,1), то это означает, что в исследуемой области к-, < 45 4 это результат довольно удивительный , если учесть, что скорость реакции СНд с неопентаном только в 3—4 раза меньше (см. табл. XII.6), чем А4. Результатом такой инертности /и/ е/и-бутил-перекиси к воздействию радикалов является довольно заметная стабильность в отношении цепного разложения. Это подтверждается тем, что скорость ниролиза не изменяется нри добавлении N0 или пропилена [73], которые чрезвычайно эффективно реагируют с радикалами. Даже добавление О2 в довольно больших количествах [73] не увеличивает скорости разложения или выхода ацетона. Однако добавление НС1 к ди-туое/и-бутилперекиси [c.322]

    Герпдон и РейдД19] установили, что метил-, этил- и ти/)епг-бутил-бензол и 1,1-дифенилэтан почти полностью разлагаются, если их нагревать до 525° С в течение iO часов. Пиз и Мортон [35], исследуя пиролиз пяти простых производных бензола при 600° С, расположили их согласно относительным объемам полученного газа в следующем порядке термической стабильности ор/ио-ксилол, толуол, бензол, мета-ксилол, этилбензол. По данным других исследователей, в интервале температур от 700 до 770° С наиболее стабильным из трех ксилолов является метаксилол, в то время как ортгео-ксилол дает наибольшее количество продуктов конденсации. [c.104]

    Равновесный состав продуктов пиролиза этапа, иропапа и бутана при давлениях 0,5, 1,0 и 1,5 ат и тедшературах 900—1300° К представлен графически на рис. 1 по данным Пнтш 14]. [c.286]

    В реакторах с псевдоожиженным слоем пылевидного катализатора, аналогичных хорошо известным блокам дегидрирования бутана и изопентана. Сгфракция дегидрирования изобутана, содержащая до 45—50% изобутилена, также подается на синтез. В принципе для получения ДМД могут использоваться любые технические С4-фракции, содержащие достаточное количество изобутилена (продукты каталитического крекинга, пиролиза, дегидратации изо-бутиловых спиртов и т. п.). Обычно сопутствующие изобутилену непредельные углеводороды С4 нормального строения, так же как пропилен и нормальные олефины С5, значительно уступают изобу-обладающему активным третичным атомом углерода, по реакционной способности во взаимодействии с формальдегидом (рис. 1, таблица).  [c.697]

    Синтез хлоропрена из ацетилена, несмотря на значительно усовершенствование технологических процессов, все же является пожаро- и взрывоопасным. Поэтому в последние годы усиленно развивается за рубежом производство хлоропрена на основе бутадиена. Это вызвано также значительным удешевлением бутадиена в связи с развитием процесса его получения из газов пиролиза нефти. Возможность синтеза хлоропрена из бутадиена через стадию 3,4-дихлор-1-бутена была впервые установлена в ЦНИИЛ Опытного завода литер С в 1936—1938 гг. [42]. Однако осуществить этот способ в опытно-промышленном масштабе было нецелесообразно в связи с высокой стоимостью бутадиена. [c.721]

    Имеются также заводы, где получаемые подобным образом индивидуальные углеводороды здесь же подвергаются дальнейшей переработке. Так, например, на заводе в Райс (США) аналогичная установка четкого фракционирования работает в комплексе с установками по химической переработке выделяемых фракций. На этоА заводе пиролизом к-бутана получают этилен к-бутан изомеризуется в изобутан, который алкилируется этиленом в диизопропил и т. д. [c.26]

    М-Бутан. н-Бутан в качестве сырья для получения этилена и пропилена имеет преимущества по сравнению с пропаном. Объясняется это тем, что в продуктах пиролиза и-бутаиа отношение пропилена к этилену выше, чем нри пиролизе пропана. Это имеет важное значение в связи с возрастанием в последнее время потребности в пропилене. Кроме того, получающийся пропилен легче выделять из продуктов пиролиза н-бутана, чем пропана, так как в последнем случае в нродз ктах пиролиза остается ненрореагировавший пропан, имеющий точку кипения, близкую к точке кипения пропилена. В случае использования к-бутана чистый пропилен можно получать непосредственно из пронановой колонны. При пиролизе бутана протекают следующие реакции  [c.40]

    При 92%-ном превращении бутана выходящий нз реактора газ содержал 37,3% этилена, 6,7% пропилена, 2,0% этана, 1,2% ацетилена, 30,5% метана, 16,6% водорода, 3,5% н-бутана и остальная часть прочие углеводороды. Выход этилена был равен 44,1% и пропилена 12,5% вес. [60]. В процессе с рециркуляцией бутана общий выход этилена и пропилена составил 48,4 и 13,3% соответственно. Указанный выход этилена на 63% больше, а пропилена на 46% меньше, чем полученный в трубчатых печах. Суммарный выход непредельных углеводородов на 15% больше, чем в трубчатых нечах. Последние данные получены в следующих условиях насадка нагревалась в камере сгорания до 1260°, поступала в реактор с температурой 945° и выходила из реактора с температурой 510°. Температура продуктов пиролиза на выходе из реактора нри этом составляла 885°. [c.50]


Смотреть страницы где упоминается термин Бутены пиролиз: [c.8]    [c.50]    [c.53]    [c.552]    [c.25]    [c.306]    [c.10]    [c.89]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.199 ]




ПОИСК







© 2025 chem21.info Реклама на сайте