Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ковалентные кристаллы . — Зонная теория

    Свойства металлов и ковалентных каркасных кристаллов можно интерпретировать в рамках представлений о делокализованных молекулярных орбиталях, рассматривая весь исследуемый объем вещества как одну гигантскую молекулу . Основанная на таких представлениях зонная теория позволяет объяснить многие наблюдаемые свойства проводников, полупроводников и диэлектриков (изоляторов). [c.640]


    Энергетические зоны. Общий подход к рассмотрению ионных, ковалентных и металлических кристаллов дает зонная теория кристаллов, которая рассматривает твердое тело как единый коллектив взаимодействующих частиц. Эта теория представляет собой теорию молекулярных орбиталей для системы с очень большим числом атомов. [c.100]

    Диэлектрики и полупроводники. Рассмотрим применение элементов зонной теории к кристаллам с ковалентными связями. При формировании подобных кристаллов наружные электронные орбитали их атомов, взаимодействуя, также образуют энергетические зоны. Однако направленный характер ковалентных связей приводит к тому, что симметрия кристалла полностью изменяет характер электронных функций взаимодействующих атомов. [c.85]

    С точки зрения зонной теории, нет качественной разницы между ковалентными и ионными кристаллами. [c.217]

    Основой при рассмотрении электрических и других свойств твердых веществ служат схемы энергетических уровней. Зонная теория уровней [134] широко использовалась не только для металлов, которые характеризуются некоторой не полностью заполненной зоной заметной ширины (порядка нескольких эв), но и для полупроводников и изоляторов, которые имеют нижнюю зону (валентную) и верхнюю зону (зону проводимости) (рис. 1). В почти совершенном изоляторе, будь то в твердом ионном соединении, таком, как хлористый натрий, или в ковалентном кристалле, как алмаз, или в молекулярном кристалле, как н-гексан, изолирующие свойства связаны с заполненной нижней зоной. Полупроводниковые свойства могут возникать при появлении положительных дырок в нижней зоне или электронов в зоне проводимости. Наряду с этими [c.661]

    Книга посвящена новой и актуальной области науки — теории химической связи в твердых телах, которая впервые трактуется как один из разделов общей квантовой химии. В ней рассматривается влияние характера химической связи на особенности электронной (зонной) структуры и прослежены аналогии между химической связью в молекулах и твердых телах. Дано краткое изложение основ квантовой химии и зонной теории твердого тела, рассмотрен характер химической связи и электронное строение для простейших типов твердых тел ковалентных кристаллов элементов IV группы и других полупроводников. [c.415]


    Характер химических связей и свойства веществ в твердом состоянии можно понять, используя теории электростатического взаимодействия (ионные кристаллы), ковалентной химической связи (атомные кристаллы) и свободных электронов (металлические кристаллы). Метод молекулярных орбиталей в виде зонной теории по- [c.113]

    Энергетическое состояние некоторых кристаллов, особенно ковалентных, где волновые функции избыточного электрона на различных атомах обычно сильно перекрываются, лучше описывается с помощью волн Блоха. Избыточный электрон ведет себя до некоторой степени так же, как электрон в свободном пространстве его поведение очень сходно с поведением атома в газе. Уровни, на которых могут располагаться избыточные электроны, образуют более или менее широкую зону. Поскольку электроны, находящиеся в этой зоне, обусловливают проводимость, то она называется зоной проводимости. Отсюда происходит и название модели — зонная модель (рис. УП.1). Электроны в зоне проводимости характеризуются определенной подвижностью, которая при комнатной температуре может изменяться в реальных случаях от 30 до 10 ООО см Ив-сек). В общем случае подвижность уменьшается при повышении температуры вследствие рассеяния на областях кристалла, где благодаря термическим колебаниям нарушается строгая периодичность кристаллической решетки (фононное рассеяние). В других кристаллах перекрытие волновых функций избыточных электронов на соседних атомах настолько мало, что скорость их движения оказывается крайне ограниченной. В этом случае зонная теория плохо описывает состояние кристалла. К лучшим результатам приводит модель, основанная на рассмотрении скачкообразных [c.152]

    На вопросы-почему происходят те или иные физико-химические процессы, отвечает теория микромира, квантовая механика молекул и кристаллов. Однако в случае сложных химических систем квантовая механика мало пока пригодна к каким-либо количественным предсказаниям. Наибольшие успехи за 60-летнюю историю квантовой химии были достигнуты в тех случаях, когда качественная, идейная сторона проблемы определялась на эмпирической основе, а количественный расчет проводился лишь на отдельных, весьма важных этапах. Характерной в этом плане является прекрасная книга Харрисона [302], в которой рассмотрены проблемы химической связи и физических свойств кристаллов в зависимости от структуры их энергетических зон. Книга Харрисона посвящена применению теории МО-ЛКАО и метода псевдопотенциала, причем такие структурно-химические понятия, как атомные радиусы, ЭО, ионность, ковалентность и металличность связи, сл ат параметрами в теоретических расчетах и рассуждениях. [c.229]

    Величина Ед соответствует эффективной ширине запрещенной зоны кристаллов соединений а Ен и С— соответственно ее ковалентной и ионной составляющим. Таким образом, в дисперсионной теории зонная структура реального кристалла, являющаяся многозначной функцией волнового вектора к в приведенной зоне Бриллюэна, подменяется двумя изотропными зонами с энергетическим зазором между ними, определяемым из соотношения [7] [c.19]

    Зонную теорию обычно используют для описания ионных кристаллов [104], которые, как правило, являются хорошими изоляторами. Полагают поэтому, что ее можно применять также при описании молекулярных кристаллов. Например, с использованием этой теории рассматривались электрические свойства кристаллов Ь и Зв [102], а также электрические свойства кристаллов типа антрацена [33]. Однако при рассмотрении молекулярных кристаллов встретились затруднения, которых не возникает, например, в случае ковалентных кристаллов типа германия или соединений двух элементов. Бьюб [18] приводит более 100 таких соединений, имеющих тесное соответствие между энергетической щелью и длинноволновой границей поглощения. Изучение всех этих кристаллов несколько осложнено наличием экситонов их спектр вполне определяется энергетической щелью. Дополнительной характеристикой служит и то, что вообще в таких соединениях эффективная масса электрона (а также дырки) имеет примерно тот же порядок величины, что и масса свободного электрона. Молекулярные кристаллы, такие, как антрацен, отличаются от только что обсуждавшихся неорганических соединений тем, что начало сильного поглощения у них непосредственно не связано с энергетической щелью между нижней зоной и зоной проводимости. Край поглощения кристаллом непосредственно связан с краем погло- [c.661]

    Согласно теории Полинга [25, 26], атомы в кристаллах металлов удерживаются вместе по существу благодаря действию ковалентных связей между ними. Из данных о физических свойствах металлов в объемной фазе Полинг заключил, что имеется три тина -орбиталей, связанных с каждым атомом твердого тела связывающие -орбитали, которые могут участвовать в образовании ,8,р-тинов гибридных связей металлические -орбитали, обусловливающие электропроводность атомные -орбитали, которые являются несвязывающими и в которые могут входить электроны. По теории Полинга, переходные металлы имеют свободными некоторые атомные -орбитали и их энергия связи приписывается образованию я/ -орбиталей. Так называемый процент -характера [25] б показывает степень участия -электронов в образовании х з-орбиталей чем выше значение б, тем меньшее число свободных атомных -орбиталей имеется у каждого атома. Иными словами, величина б служит мерой недоступности электронов, находящихся в атомных -орбиталях. Некоторые типичные значения процента -характера приведеныв табл. 6.1. Следует отметить, что когда, согласно зонной теории, [c.269]


    Модели дефектов обычно строятся по аналогии с хорошо изученными дефектами в ш,елочногалоидных кристаллах или по аналогии с классическими полупроводниками, с четырьмя валентными электронами. Природа дефектов в ионных кристаллах типа щелочногалоидных и в ковалентных кристаллах, таких как германий, кремний и соединения типа А В, в основном описывается с достаточным приближением в первом случае ионной моделью, во втором случае — зонной теорией полупроводников. И в том и в другом случае заполненные состояния отделены от свободных запрещенной зоной. [c.3]

    С другой стороны, чисто зонная модель тоже недостаточна для описания свойств окислов, так как неясна природа локализации -электронов в незаполненных оболочках. Для объяснения этого факта Мотт и Гуденаф предложили два различных подхода. Мотт исходит из зонной теории ионных кристаллов, рассматривая узкую -зону, расщепленную кристаллическим полем. Б окисле, где атомы металла разделены атомами кислорода, -зона еще больше сужается, самое понятие зоны теряет смысл. Перекрытие -состояний отсутствует, и электроны локализованы на ионах переходного металла. Гуденаф рассматривает окисел в приближении ковалентных связей, как в координационных соединениях, в которых переходный металл связан с окружением гибридными связями, включающими и -орбитали. В частных случаях, когда это согласуется со структурой, Гуденаф полагает, что может образоваться прямая ковалентная катион-катионная связь. Такой [c.4]

    Ион-дипольное взаимодействие подобно притяжению ионов, за исключением того, что оно более чувствительно к расстоянию (l/r вместо 1/г, см. разд. 3.2) и энергия его всегда меньше вследствие неполного разделения зарядов в ковалентном диполе. Такое взаимодействие проявляется, например, при образовании сольватов ионов (гидратов ионов — в водном растворе) в процессе растворения и диссоциации ионных кристаллов в полярном растворителе, например Na(H20)x и FiHjO) в водном растворе NaF. Подобные сольваты (гидраты) многих катионов металлов и некоторых анионов имеют вполне определенный состав в первой зоне сольватации (гидратации), например [Со(Н20)б] + в воде и [Со(ЫНз)б] + в жидком аммиаке. Для описания таких сольватов используется электростатическая теория кристаллического поля (см. разд. 10). [c.177]

    Свойства поверхности кристалла при Т <Тс анализировали с позиций классической и квантовохимической теории связи. Расчеты показали, что в приповерхностной зоне ионных кристаллов на ионы действует несимметричное электрическое поле, которое должно смещать катионы слоя 8 к слою Г на 1—15% от параметра решетки [46, 47]. Тенденция к смещению анионов под действием несимметричного поля частично компенсируется их поляризацией, в результате чего анионы смещаются к слою Г значительно меньше, а в некоторых случаях даже удаляются от него, например, как в кристаллах фторида лития и хлорида натрия [47]. Асимметрия поля вблизи поверхности кристаллов является также при- чиной тангенциального смещения ио-нов, а именно, сближения противоио-нов с образованием квазимолекуляр-ных пар , расположенных правильными рядами, что приводит к увеличению степени ковалентности связи в слое 8 [48, 49]. В случае ковалентных и металлических кристаллов слой и ряд глубинных монослоев смещаются от центра кристалла [50—52], что связано с ослаблением связи, в частности, из-за регибридизации молекулярных орбита-лей в поверхностном слое [51]. Степень смещения слоев согласно квантовомеханической теории должна быстро убывать по мере перехода к более глубоким слоям кристалла (рис. 4.5). [c.65]


Смотреть страницы где упоминается термин Ковалентные кристаллы . — Зонная теория: [c.78]    [c.99]    [c.81]    [c.51]   
Смотреть главы в:

Химия Справочник -> Ковалентные кристаллы . — Зонная теория




ПОИСК





Смотрите так же термины и статьи:

Зонная теория

Зонная теория кристаллов

Ковалентность

Кристаллы ковалентные



© 2025 chem21.info Реклама на сайте