Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Жесткие и мягкие кислоты и основания

Таблица 8. Типичные представители жестких и мягких кислот и оснований Таблица 8. Типичные представители жестких и <a href="/info/186175">мягких кислот</a> и оснований

Таблица 8.2. Жесткие и мягкие кислоты и основания Таблица 8.2. Жесткие и <a href="/info/186175">мягкие кислоты</a> и основания
    В последнее время используется концепция жестких и мягких кислот и оснований, выдвинутая Пирсоном (1936). Все кислоты и основания разделены на два класса — мягкие и жесткие, для которых справедливо правило мягкие кислоты предпочитают связываться с мягкими основаниями, а жесткие кислоты —с жесткими основаниями. [c.287]

    Ход изменения растворимости галогенидов серебра можно объяснить и в терминах теории жестких и мягких кислот и оснований. Фторид-ион — более жесткое основание, чем хлорид-ион свойства бромид-иона занимают промежуточное положение при переходе к типично мягкому основанию — иодид-иону. Поскольку ион Ag+ представляет собой мягкую кислоту, силы взаимодействия катиона и аниона возрастают от AgF к Agi, что имеет следствием уменьшение растворимости галогенидов в том же направлении. Различие в растворимости труднорастворимых соединений серебра можно качественно наблюдать а опыте 8. [c.648]

    Применение теории жестких и мягких кислот и оснований. Теория жестких и мягких кислот и оснований оказалась во многих отношениях полезной. Она позволяет качественно предсказать наиболее стабильные продукты реакции между электрофильными и нуклеофильными соединениями, т. е. оценить положение равновесия реакций, для которых не имеется достаточно точных термодинамических характеристик ввиду сложности их определения. Основную роль в теории играет уже рассмотренное выше правило о том, что предпочтительными являются комбинации жесткая кислота — жесткое основание и мягкая кислота — мягкое основание. Этот эффект упрочнения связи между участниками реакции одинаковой степени жесткости назван Йоргенсеном симбиозом . [c.397]

    Авторы рассматриваемой работы интерпретируют полученные ими данные С Позиций введенного Пирсоном принципа ЖМКО (жестких и мягких кислот И оснований). [c.247]

    Константы диссоциации и ассоциации кислот и оснований все же описывают их свойства недостаточно полно. Важную роль в понимании многих химических процессов, и в частности явления катализа, сыграла концепция жестких и мягких кислот и оснований (принцип [c.235]


    Причины различной относительной устойчивости многочисленных комплексов этих элементов можно понять с позиций теории жестких и мягких кислот и оснований. В качестве примера рассмотрим комплексные соединения кобальта в степени окисления 4-3 [ o(NH3)s] + (жесткая кислота), [ o( N)s] (мягкая кислота). Если в кислотно-основном комплексе кислота— жесткая, то более устойчив комплекс с жестким основанием (например, с ионом F ) и менее устойчив комплекс с мягким основанием (например, с ионом 1 ) Со(ЫНз)5р]2+ более устойчив, чем [Со(ННз)51] +. Подтверждением правила, согласно которому мягкие кислоты образуют более устойчивые комплексы с мягкими основаниями, служит сравнение различных сме- [c.635]

    Перхлорат тетрафениларсония используется в количественном анализе для определения СЮ4--иона, Благодаря своей малой поляризуемости ион СЮ4 стабилизирует высокие степени окисления, давая простые соли. Согласно теории жестких и мягких кислот и оснований, СЮ4 относится к жестким основаниям. В водных растворах он не образует анионных комплексов, так что в перхлоратных растворах можно, например, проводить точные измерения стандартных потенциалов катионных окислительно-восстановительных систем. Окислительный потенциал кислого раствора сульфата Се(IV) в присутствии ионов СЮ4 больше, чем в присутствии ионов NOa , S04 или 1 . [c.509]

    Согласно принципу жестких и мягких кислот и оснований, жесткие кислоты предпочтительно взаимодействуют с жесткими основаниями, а мягкие кислоты—с мягкими основаниями (т. 1, разд. 8.4). При реализации механизма SnI нуклеофил атакует карбокатион, который представляет собой жесткую кислоту. В механизме Sn2 нуклеофил атакует атом углерода молекулы, которая является более мягкой кислотой. Болёе электроотрицательный атом амбидентного нуклеофила — это более жесткое основание, чем менее электроотрицательный атом. Поэтому можно утверждать, что при изменении характера реакции от SnI к Sn2 вероятность атаки менее электроотрицательным атомом амбидентного нуклеофила возрастает [362]. Следовательно, переход от условий реакции SnI к условиям реакции Sn2 должен способствовать атаке атома углерода в цианид-ионе, атома азота в нитрит-ионе, атома углерода в енолят- и фенолят-ионах и т. д. Например, атака на первичные алкилгалогениды (в протонных растворителях) происходит атомом углерода аниона, полученного из СНзСОСНгСООЕ , тогда как а-хлороэфиры, которые взаимодействуют по механизму SnI, атакуются атомом кислорода. Однако это не означает, что во всех реакциях Sn2 атакует менее электроотрицательный атом, а во всех реакциях SnI—более электроотрицательный. Направление атаки зависит также и от природы нуклеофила, растворителя, уходящей группы и других условий. Это правило утверждает лишь, что усиление SN2-xapaKTepa переходного состояния делает более вероятной атаку менее электроотрицательным атомом. [c.97]

    Гидрид-ион— настолько сильное основание, что действие на него воды проявляется как окислительно-восстановительная реакция (разд. 33.4.1.5). С точки зрения теории жестких и мягких кислот и оснований (разд. 33.4.3.4) гидрид-ион — чрезвычайно мягкое основание. [c.465]

    Представление о жестких и мягких кислотах и основаниях выдвинул Пирсон (1963). Все кислоты и основания он разделил на два класса — мягкие и жесткие и сформулировал правило жесткие кислоты предпочитают связываться (образуют более прочные соединения) с жесткими основаниями, а мягкие кислоты предпочитают связываться с мягкими основаниями. [c.243]

    При уменьшении порядка связи усиливаются кислотные свойства аналогичных соединений. Присутствие свободной электронной пары, играющей определяющую роль в химии азота, существенно также и в случае гидразина. В водных растворах гидразин, так же как ЫНз, дает щелочную реакцию с сильными кислотами он дает ониевые соединения. В рамках теории жестких и мягких кислот и оснований гидразин — жесткое основание. [c.536]

    С привлечением теории жестких и мягких кислот и оснований объясните, почему соединения селена и теллура в низших степенях окисления действуют как яды по отношению к поверхности металлов — катализаторов. [c.529]

    Теория жестких и мягких кислот и оснований объясняет также различия в способности галогенид-ионов образовывать координационные соединения с катионами различной степени жесткости. С катионом АР+ (жесткая кислота) последовательность имеет следующий вид (в порядке убывания стабильности) р-, С1 >Вг >1 с катионом Hg + (мягкой кислотой) более стабильные соединения получаются в обратной последовательности. [c.398]

    Объясните поведение водорода и его ионов в рамках теории жестких и мягких кислот и оснований. [c.469]

    На примере нескольких соединений объясните, почему оксид- и гидр оксид-ион относятся к жестким основаниям. Какие соединения по теории жестких и мягких кислот и оснований термодинамически наиболее устойчивы  [c.485]


    Покажите, что, согласно теории жестких и мягких кислот и оснований, ноны F и О - являются жесткими реагентами. [c.490]

    Сделайте обзор различных реакций диборана. Как следует классифицировать диборан в рамках теории жестких и мягких кислот и оснований  [c.576]

    Однако вряд ли сольватация — единственная причина закономерного изменения свойств нуклеофилов, так как даже для незаряженных нуклеофилов нуклеофнльность возрастает при переходе сверху вниз в группе периодической таблицы. Такие нуклеофилы не столь сильно сольватированы, а изменение природы растворителя не оказывает на их нуклеофильность такого большого влияния (265]. Для объяснения можно использовать принцип жестких и мягких кислот и оснований (т. 1, разд. 8.4) [266]. Протон представляет собой жесткую кислоту, а алкильный субстрат (который можно рассматривать как кислоту Льюиса по отнощению к нуклеофилу, рассматриваемому как основание) намного мягче. Тогда в соответствии с принципом ЖМКО, приведенным в т. 1, разд. 8,4, следует ожидать, что алкильная группа по сравнению с протоном будет взаимодействовать предпочтительно с более мягкими нуклеофилами. Поэтому больщие по размеру, легче поляризуемые (более мягкие) нуклеофилы с большей силой (относительной) притягиваются к алкильному атому углерода, чем к протону. Это можно объяснить и по-другому чем выше поляризуемость нуклеофила, тем легче деформируется электронное облако, поэтому большие нуклеофилы в большей степени способны реально передать электронную плотность на субстрат, чем маленькие нуклеофилы, электронные облака которых более плотны. [c.77]

    Дайте объяснение устойчивости галогенных комплексов ртути в рампах теории жестких и мягких кислот и оснований. [c.512]

    Попытки теоретической интерпретации теории жестких и мягких кислот и оснований. С помощью этой теории возможны качественные предсказания и объяснения для реакций между нуклеофильными и электрофильными соединениями, а также оценка стабильности образовавшихся веществ. Поскольку ход реакции и стабильность связей зависят ог целого ряда факторов, количественная трактовка всех этих факторов возможна только с определенной степенью приближения. Однако, несмотря на эти ограничения, можно 1 редставить себе основные принципы теории Пирсона с помощью известных моделей химической связи. [c.399]

    С позиции теории жестких и мягких кислот и оснований рассматривают пять основных типов реакций неорганических н органических соединений  [c.243]

    Метан не вступает с водой в протолитическую реакцию. СНз , как и 0 , ННг", а также другие подобные ионы,— очень сильное основание. Согласно концепции жестких и мягких кислот и оснований, все они считаются мягкими основаниями. [c.557]

    О2, 50з, А1С1з, Н2СГО4, В(СНз)з и т, д.), чтобы видеть ошибочность классификации кислот и оснований толька по типу орбита-лей, так как они не отражают их специфики. Основания Льюиса— это типичные комплексообразователи, а кислоты Льюиса имеет смысл употреблять только для узкой группы соединений. Подобные замечания можно сделать о представлениях о жестких и мягких кислотах и основаниях, теории солеобразования и др. [c.288]

    Сходство химического поведения ионов Сг +, Ре + и А1+ может быть качественно объяснено в рамках теории жестких и мягких кислот и оснований (разд. 33.4.3.4). Все эти ионы — жесткие кислоты. О строении атома элемента 106 см. разд. 36.13.. [c.618]

    Жесткие и мягкие кислоты и основания. Р. Дж. Пирсон (1936) классифицирует кислоты и основания Льюиса как жесткие, мягкие и промежуточные. [c.213]

    Проиллюстрируем понятие о жестких и мягких кислотах и основаниях на нескольких примерах. [c.245]

    Развитие новых v представлений стало возможным при использовании теории строения веществ. В настоящее время наиболее широкое распространение получили протонная и электронная теории,.а также концепция жестких и мягких кислот и оснований. [c.282]

    Для объяснения различий между основностью и нуклеофиль-ностью в 1963 г Пирсон сформулировал простое правило, названное принципом жестких и мягких кислот и оснований (ЖМКО). Жесткие кислоты и основания характеризуются высокой электроотрицательностью, малым атомным радиусом, малой поляризуемостью и прочно удерживают электроны. Мягкие кислоты и основания имеют меньшую электроотрицательность, больший атомный радиус, высокую поляризуемость и слабее удерживают электроны. Согласно принципу ЖМКО жесткие основания легче связываются с жесткими кислотами, а мягкие основания — с мягкими кислотами. [c.159]

    Под этой, быть может, не очень грациозной и не очень удачной аббревиатурой скрывается теория жестких и мягких кислот и оснований, сформулированная в 60-х годах Р. Пирсоном и являющаяся своеобразным развитием теории Усановича. Но прежде чем изложить основные положения этой теории, следует познакомиться с таким важным свойством нейтральных и заря- [c.17]

    Теория жестких и мягких кислот и,оснований (разд. 33.4.3.4) позволяет дать объяснение возможности стабилизации различных степеней окисления за счет комплексообразования с различными лигандами. Мягкие лиганды (например, СО, Р(СНз)з, 2H5N ) стабилизируют низкие степени окисления металлов, (мягкие кислоты). И наоборот, жесткие лиганды (такие, как ионы F и 0 ) способствуют стабилизации высоких степеней, окисления металлов [Ni (СО) 4 и KafNiFe], Na2pe04 ]. [c.633]

    Представления о жестких и мягких кислотах и основаниях. [c.287]

    Жесткие и мягкие кислоты и основания [c.337]

    Дайте объяснение факту устойчивости и процессу осаждения РЬВгР с позиции теории жестких и мягких кислот и оснований. [c.490]

    В 1920-х годах практически одновременно Льюис и Бренстед вьщвннули свои теории кислот и оснований, которыми в настоящее время пользуются практически все химики. В 1960-х годах Пирсон дополнил теории Льюиса и Бренстеда, предложив использовать представления о "жестких" и "мягких" кислотах и основаниях. Эти иредставлення хорошо обоснованы квантовой химией такнм образом, чисто химические ионятня "кислота" и "основание" в настоящее время получили физическое содержание. [c.207]

    Для объяснения этих и множества других подобных наблюдений в 1963 г. Пирсон предложил принцип жестких и мягких кислот и оснований (принцип ЖМКО), который с тех пор нашел широкое ирнмененне в органической химии. [c.213]

    Сольватация. В оиределении свойств жестких и мягких кислот и оснований огромную роль играет растворитель. Поскольку Ь " " - жесткая кислота, мы говорим, что ему должно соответствовать высокое значение НСМО. На самом деле расчет изолированного иона Ы" " показывает, что пусгая 2 -орбиталь расположена гораздо ниже по энергии, чем орбитали больших по размерам и предположительно более мягких ионов. Подобньш образом ВЗМО небольших анионов (ОН", Г") в газовой фазе расположены достаточно высоко, как и следовало ожидать, учитывая сильное отталкгшание между злектронами, сконцентрированными в малом объеме. Таким образом, изолированные ионы Ы" ", ОН", Г" имеют орбитальные характеристики, которые мы приинсьшали мягким системам. [c.223]

    АгН ТЦХД), где первыми в скобках указаны доноры, вторыми-акцепторы R-алкил, Ме-металл и X-галоген ТЦХД-тетрацианохинодиметан. Любое основание может вступать во взаимод. с любой к-той. Одно и то же соед. в зависимости от партнера может выступить как основание или как к-та. О специфичности кислотно-основного взаимодействия см. Жестких и мягких кислот и оснований принцип. [c.394]


Смотреть страницы где упоминается термин Жесткие и мягкие кислоты и основания: [c.182]    [c.243]    [c.105]    [c.125]    [c.464]    [c.605]   
Смотреть главы в:

Реакционная способность и пути реакций -> Жесткие и мягкие кислоты и основания

Основы неорганической химии  -> Жесткие и мягкие кислоты и основания

Теоретическая неорганическая химия Издание 3 -> Жесткие и мягкие кислоты и основания

Неорганическая химия -> Жесткие и мягкие кислоты и основания

Введение в электронную теорию органических реакций -> Жесткие и мягкие кислоты и основания

Химия координационных соединений в неводных растворах -> Жесткие и мягкие кислоты и основания

Химия координационных соединений -> Жесткие и мягкие кислоты и основания


Химия и периодическая таблица (1982) -- [ c.0 ]

Реакционная способность и пути реакций (1977) -- [ c.74 , c.241 , c.245 ]




ПОИСК





Смотрите так же термины и статьи:

Жесткая кислота

Жесткое основание

Мягкие кислоты

Мягкие кислоты основания

Основания и кислоты



© 2024 chem21.info Реклама на сайте