Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фосфолипиды мембран синтез

Рис. 8-56. Синтез фосфолипидов протекает па цитоплазматической стороне мембраны ЭР. Каждый фермент, участвующий в этом синтезе, представляет собой интегральный мембранный белок ЭР, активный центр которого обращен к цитозолю В цитозоле есть все соединения, необходимые для сборки фосфолипидов. В процессе, изображенном здесь, из комплекса жирная кислота - кофермент А, глицерол-3-фосфата и Рис. 8-56. Синтез фосфолипидов протекает па цитоплазматической <a href="/info/1388494">стороне мембраны</a> ЭР. <a href="/info/1538594">Каждый фермент</a>, участвующий в <a href="/info/201119">этом синтезе</a>, представляет <a href="/info/1795776">собой</a> <a href="/info/509935">интегральный мембранный</a> белок ЭР, <a href="/info/5969">активный центр</a> которого обращен к цитозолю В цитозоле есть все соединения, необходимые для сборки фосфолипидов. В процессе, изображенном здесь, из <a href="/info/747219">комплекса жирная кислота</a> - кофермент А, глицерол-3-фосфата и

    ФОСФАТИДЫ (фосфолипиды) — сложные эфиры фосфорной кислоты и глицерина или сфингозина, которые связаны эфирной или амидной связью с одним или несколькими остатками высших жирных кислот. В зависимости от природы спирта, лежащего в основе химической структуры Ф., различают глицерофос-фатиды и сфингофосфатиды. Ф. входят в состав клеток и тканей всех живых организмов. Особенно велико их содержанне в нервной ткани, они есть в мозге, печени, мускулах, принимают участие в окислительных процессах живых организмов. Ф. вместе с холестерином и белками, участвуют в построении мембран клеток, обусловливают избирате,аьную проницаемость для различных соединений, активно переносят вещества через мембраны, играют важную роль в транспортировке жиров, жирных кислот и холестерина. Нарушение синтеза Ф. в организме ведет к развитию жирового перерождения печени. [c.264]

    Развитие радиоизотопных методов позволило получить точные количественные данные о скоростях обновления в организмах биологически активных соединений. Было показано, что клетка много раз обновляет свой состав за время своего существования. Особенно интересно, что скорость замены той или иной составной части макроструктуры (например, мембраны) зависит от химической природы этой части и скорости переноса ее от места синтеза к месту функционирования высокая степень кинетической согласованности обеспечивает сохранение всей макроструктуры. Время полужизни ядерных белков около 120 ч, белков плазматической мембраны —50, фосфолипидов — от 15 до 80, холестерина от 24 до 140, цитохрома (65) —около 100 ч и т. д. [c.347]

    Возникновение клетки представляется следующим образом. В ходе эволюции появляются ферментные системы синтеза детергентов (например, фосфолипидов). Слой таких детергентов обволакивает комплект матричных молекул, молекул ферментов и низкомолекулярных метаболитов, образуя поверхностную мембрану. Синтез компонент мембраны строго регулируется — их количество должно соответствовать поверхности клетки. [c.89]

    Помимо родопсина были исследованы также синтез и обмен других компонентов рецепторной мембраны, а именно белка (опсина), фосфолипидов и углеводов. [c.316]

    Липиды составляют вместе с белками и углеводами основную массу органического вещества живой клетки. Они присутствуют в организмах различного происхождения растительных, животных, бактериальных. В высокой концентрации липиды (особенно фосфолипиды) обнаружены в различных органах животных и человека головном и спинном мозге, крови, печени, сердце, почках и т. д., особенно велико содержание липидов в нервной системе (20—25%). Липиды входят в состав всех структурных элементов клетки, в первую очередь клеточных мембран, и мембран субклеточных частиц липиды (в виде липопротеидов) составляют не менее 30% общей сухой массы мембраны. С участием липидов протекают такие важнейщие биохимические процессы, как передача нервного импульса, активный перенос через мембраны, транспорт жиров в плазме крови, синтез белка и другие ферментативные процессы, особенно процессы, связанные с цепью переноса электронов и окислительным фосфорилированием. [c.185]


    Жирные кислоты, входящие в состав мембранных липидов, представлены насыщенными — стеариновой (18 0), пальмитиновой (16 0), миристиновой (14 0) и ненасыщенными — олеиновой (18 1), линолевой (18 2), линоленовой (18 3), арахидоновой (20 4) — жирными кислотами. Почти все природные жирные кислоты характеризуются цис-конфигурацией двойных связей. Углеводородная цепь в такой конфигурации имеет излом, что нарушает упаковку липидных молекул в бислое. Огромное разнообразие фосфолипидов и различия в их физико-химических свойствах обусловлены возможностью комбинирования полярных головок с различными кислотами. Лизоформы липидов, имеющие одну углеводородную цепь, при высоких концентрациях действуют подобно детергентам и способны разрушать клеточные мембраны. Примером является лизолецитин (1- или 2-ацилглицерофосфо-холин), образующийся из фосфатидилхолина (лецитина) под действием фосфолипаз Aj и А . В его присутствии происходит распад клеточных мембран, что может служить одной из причин смерти при укусе змей. В молекулах одно цепочечных диольных липидов вместо глицерина содержатся более простые спирты — этиленгликоль или пропандиол. Предполагают, что они способны выполнять регуляторную роль в функционировании биомембран. Синтез этих липидов резко усиливается в случае возрастания функциональной активности клеток (например, в созревающих семенах и клетках регенерирующих тканей). [c.16]

    Как мы уже говорили, ферменты, ответственные за синтез фосфолипидов, располагаются на цитоплазматической стороне везикул эндоплазматического ретикулума. По мере синтеза фосфолипидов происходит их самосборка с образованием термодинамически стабильных бимолекулярных слоев, которые включаются в мембрану везикул. Липидные везикулы, происходящие от эндоплазматического ретикулума, по-видимому, перемещаются к аппарату Гольджи, фрагменты которого в свою очередь сливаются с плазматической мембраной. Мембраны аппарата Г ольджи и везикул эндоплазматического ретикулума асимметричны в поперечном направлении как по фосфолипидам, так и по белкам, и эта асимметрия сохраняется до слияния с плазматической мембраной. Внутренняя поверхность везикулярных мембран оказывается с наружной стороны плазматической мембраны, а цитоплазматическая остается на ее цитоплазматической стороне (рис. 42.10). Поскольку поперечная асимметрия в мембранах везикул, происходящих из эндоплазматического ретикулума, существует еще до слияния с плазматической мембраной, основной проблемой сборки мембран становится вопрос о том, каким образом интегральные белки асимметрично включаются в липидный бислой эндоплазматического ретикулума. [c.135]

    Глюкокортикоиды диффундируют через клеточные мембраны в цитоплазму и связываются со специфическими глюкокортикоидными рецепторами. Образовавшийся комплекс проникает в ядро и влияет на процессы синтеза белка. Механизм действия глюкокортикоидов заключается также в ингибировании высвобождения арахидоновой кислоты и фактора активации тромбоцитов из фосфолипидов мембран клеток. [c.407]

    Синтез АТФ из АДФ и Фн может происходить в мембранных везикулах и в отсутствие переносчиков электронов. Для этого необходимо лишь тем или иным образом создать трансмембранную разность электрохимических потенциалов Н+ на мембране, в которой находится АТФ-синтетаза. Такого рода процессы синтеза АТФ наблюдаются в липосомах из фосфолипидов, в состав которых помимо АТФ-синтетазы входит бактериородопсин (см. гл. XXIX), способный под действием света переносить Н+ через мембраны. Аналогично, синтез АТФ можно осуществить, создав разность АрН с помощью кислотно-щелочного удара или прикладывая разность электрических потенциалов. В действительности проблема состоит в том, чтобы понять, каким образом компоненты АрН+ взаимодействуют с Н+-АТФазой, не вовлекая непосредственно перенос электрона в ЭТЦ. [c.219]

    Ионизирующее излучение индуцирует снижение общего уровня мембранных фосфолипидов и повыпхение содержания холестерина, что сопровождается возрастанием коэффициента холестерин/фосфолипиды до 1,05 при норме 0,60. Однако уровень индивидуальных фосфолипидов изменяется разнонаправленно происходит накопление сфингомиелина и фосфатидилсерина и снижение содержания фосфатидилхолина, фосфатидилэтаноламина и особенно фосфатидилинозитола. В целом коэффициент насыщенности мембранных липидов повышается. Все это приводит к значительным нарушениям текучести мембраны, увеличению ее вязкости, изменению функциональных свойств мембранных белков. Предполагают, что механизм пострадиационной модификации состава и содержания структурных липидов в плазматических мембранах животной клетки связан с изменением процессов синтеза и распада липидпереносящих белков, ферментов липидного обмена, нарушением внутримембранной динамики липидных компонентов. [c.146]

    Фосфолипиды клеточных мембранных структур обновляются очень быстро. Почти половина всех фосфолипидов обновляется в ходе каждого деления клетки. При этом скорость деградации и синтеза фосфолипидов зависит от типа мембранных структур и от класса фосфолипида. Полупериод жизни клеток печени составляет 2—3 дня. Половина всех фосфолипидов внешней мембраны митохондрий обновляется через 5—6 дней, внутренней — через 8—10, а фосфолипиды мембран микросом — через 1—2 дня. При этом полупериод обмена сфингомиелина — 38 ч, фосфатидилсерина — 23, фосфатидилхолина и фосфатидиламина — около [c.176]


    Биогенез мембран. Генетическая связь мембранных компонентов клетки выявляет ведущую роль мембран шероховатого ЭР в биогенезе клеточных мембран. Действительно, ЭР — основное место синтеза мембранных белков и липидов клетки. В мембранах ЭР локализованы конечные этапы синтеза глице-ролипидов, мембранных фосфолипидов (от которых зависит, например, сборка мембран митохондрий и хлоропластов), биосинтез стеролов, синтез всех насыщенных жирных кислот и системы преобразования насыщенных кислот в ненасыщенные. Именно в ретикулуме синтезируются свойственные растительным мембранам полиеновые жирные кислоты (линолевая, линоленовая, арахидоновая). Производными мембран ретикулума являются мембраны вакуолей, микротел, сферосом, возможно, наружные мембраны пластид и митохондрий. Ретикулум непосредственно связан с ядерной оболочкой. Через мембранную систему АГ он принимает участие в синтезе плазмалеммы  [c.324]

    Под негативным контролем гуанозинтетрафосфата находится синтез важнейших компонен рв клеточной мембраны и клеточной стенки фосфолипидов, липополисахаридов и пептидогликана. В ряде случаев прямо показано, что ффГфф подавляет активность соответствующих ферментов. [c.31]

    Выделенные пурпурные мембраны могут быть включены в пузырьки, содержащие животные или растительные фосфолипиды, тде они также вызывают выделение Н+ на свету (в этом случае внутрь пузырьков, так как мембраны в таких искусственных образованиях вывернуты наизнанку ). В эти пузырьки может включаться АТРаза митохондрий бычьего сердца, и тогда под действием света осуществляется синтез АТР (Ra ker, Stoe keni-.us, 1974). [c.402]

    Клетки Я. halobium способны использовать энергию света для выброса протонов и синтеза АТР, несмотря на то что в них отсутствует хлорофилл. Было установлено, что перенос протонов происходит при работе бактериородопсина. Для этого выделенные пурпурные мембраны были реконструированы в замкнутые мембранные везикулы с помощью добавленных фосфолипидов. Такие везикулы имеют ориентацию мембраны, противоположную [c.146]

    Мембраны ЗЦС и НЦС близки по строению л химическому составу. Некоторые функции являются общими для обоих типов мембран известно, что ряд ферментов имеется как в ЗЦС, так и в НЦС. Через полости ЦС транспортируются секретируемые клеткой белки. Каждый тип-мембран имеет и свои индивидуальные функции синтез и ферментативная модификация синтезируемых белков происходит на ЗЦС, синтез фосфолипидов и наличие детоксифицирующих ферментов характерны для НЦС. [c.329]


Смотреть страницы где упоминается термин Фосфолипиды мембран синтез: [c.7]    [c.556]    [c.51]    [c.34]    [c.37]    [c.350]    [c.82]    [c.57]    [c.242]    [c.24]    [c.37]    [c.350]    [c.184]    [c.291]   
Микробиология Издание 4 (2003) -- [ c.88 ]




ПОИСК





Смотрите так же термины и статьи:

Фосфолипиды



© 2025 chem21.info Реклама на сайте