Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Окислительные процессы живых организмов

    ОКИСЛИТЕЛЬНЫЕ ПРОЦЕССЫ ЖИВЫХ ОРГАНИЗМОВ [c.29]

    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]


    Гем, или порфирин железа, входит также в активные центры ферментов, таких, как пероксидаза и каталаза. Многие другие переходные металлы также являются важнейшими участниками ферментативного катализа некоторые из них будут обсуждены в гл. 21. В результате появления миоглобина и гемоглобина были сняты ограничения на размеры живых организмов. Это привело к появлению разнообразных многоклеточных организмов. Поскольку переходные металлы и органические циклические системы с двойными связями, подобные порфиринам, чрезвычайно приспособлены к поглощению видимого света, а их комбинации проявляют разнообразные окислительно-восстановительные свойства, жизнь можно рассматривать как одну из областей, где протекают процессы координационной химии. [c.262]

    Окислительно-восстановительные реакции постоянно протекают в живых организмах. Фотосинтез, дыхг ние и ряд других биологических процессов являются окислительно-восстановительными. [c.126]

    ФОСФАТИДЫ (фосфолипиды) — сложные эфиры фосфорной кислоты и глицерина или сфингозина, которые связаны эфирной или амидной связью с одним или несколькими остатками высших жирных кислот. В зависимости от природы спирта, лежащего в основе химической структуры Ф., различают глицерофос-фатиды и сфингофосфатиды. Ф. входят в состав клеток и тканей всех живых организмов. Особенно велико их содержанне в нервной ткани, они есть в мозге, печени, мускулах, принимают участие в окислительных процессах живых организмов. Ф. вместе с холестерином и белками, участвуют в построении мембран клеток, обусловливают избирате,аьную проницаемость для различных соединений, активно переносят вещества через мембраны, играют важную роль в транспортировке жиров, жирных кислот и холестерина. Нарушение синтеза Ф. в организме ведет к развитию жирового перерождения печени. [c.264]

    Процессы окисления и восстановления происходят в живом организме. Укажите, какие известные вам жизненно важные процессы относятся к окислительно-восстановительным. [c.30]

    В свою очередь гомогенный катализ можно разделить по типу применяемого катализатора на кислотно-основной (в присутствии кислот и оснований), окислительно-восстановительный (в присутствии ионов металлов переменной валентности), координационный или металлокомплексный (промежуточные продукты — комплексные соединения) и гомогенный газофазный (например, окисление диоксида серы кислородом в присутствии следов оксидов азота). К гомогенно-каталитическим процессам относят и ферментативный катализ биохимических процессов, происходящих в живых организмах под влиянием сложных белковых катализаторов — ферментов (энзимов). [c.234]


    Многие ферменты, катализирующие окислительно-восстановительные реакции, содержат атомы железа. Примером могут служить цито-хромы, присутствующие в каждом живом организме. Они содержат гем-группы, связанные с белком иначе, чем в молекулах миоглобина и гемоглобина. Интересным является белок, содержащий негемовое железо (так называемый высокопотенциальный железосодержащий белок), выделенный из клеток нескольких видов пурпурных бактерий. Он может обратимо одноступенчато (путем потери одного электрона) окисляться ионом гексацианоферрат(П1) кислоты [Ре(СК)б] и другими окислителями и, вероятно, катализирует какие-то окислительные процессы, важные для физиологии бактерий. На рисунке, где приведена [c.443]

    Строение и свойства углеводов, рассмотренные выше, позволяют понять их функции в живом организме. Будучи альдо- или кето-спиртами, т.е. уже частично окисленными органическими молекулами, углеводы легко вступают в реакции дальнейшего окисления. Вследствие этого основная функция углеводов - энергетическая углеводы различного строения являются основными поставщиками энергии и на их долю приходится более 50% всей вырабатываемой в организме энергии. В зависимости от того, какое вещество является акцептором электронов в ходе окисления, процессы окислительного распада углеводов делятся на анаэробные и аэробные (акцепторы электронов - различные химические субстраты в анаэробных процессах и кислород - в аэробных процессах). [c.77]

    Таким образом, взаимопревращение метаболитов, образующихся при катаболизме веществ разных классов, тесно связано с энергетическим обменом. Известно, что одним из энергоемких процессов в организме является биосинтез белка, и становится понятна в этом отношении интеграция этого процесса с катаболическими реакциями превращения глюкозы и триацилглицерола — основными источниками синтеза АТФ в процессе окислительного фосфорилирования. В свою очередь, все реакции углеводного и липидного обмена катализируются ферментами, являющимися белками. Следует отметить, что единство метаболических процессов находится под воздействием условий внешней среды и способность живых организмов сохранять постоянство внутренней среды — биохимический гомеостаз — при помощи механизмов саморегуляции является одним из важнейших свойств всех живых систем. [c.449]

    Аскорбиновая кислота (витамин С), органическое вещество сложного строения — бесцветные кристаллы, чувствительные к нагреванию. Участвует в окислительно-восстановительных процессах живого организма. [c.259]

    Образование промежуточных продуктов при окислении и восстановлении имеет очень большое значение для различных химических реакций, а также для характеристики многих других важных явлений (медленное окисление при различных биохимических процессах, горение газообразного топлива в моторах и т. д.). Основоположник советской биохимии, акад. А. Н. Бах, показал , что окислительные процессы в живом организме связаны с образованием различных соединений перекисного ха- [c.358]

    Свободный радикал — нейтральная многоатомная частица с неспаренньш электроном на внешней валентной орбитали. Свободные атомы и радикалы являются активными промежуточными частицами в самых разнообразных химических процессах, таких, как полимеризация, окисление, галоидирование, распад с их участием протекают реакции в атмосфере, многие технологические процессы, окислительно-восстановительные превращения в живом организме. [c.138]

    Практически все живые организмы являются аэробами иными словами, для того чтобы жить, опи нуждаются в кислороде. Кислород служит для окисления различных органических соединений, поступающих в клетку в результате пищеварения или метаболизма. Однако в отличие от обычных реакций окисления, проводимых в лабораторных или промышленных условиях, в биологических окислительных процессах участвуют соединения, которые переносят электроны от субстрата (отдавая электроны, он окисляется) к кислороду. Этот так называемый транспорт электронов осуществляется группой соединений, которые составляют дыхательную цепь. Транспорт электронов в клетке всегда сопровождается превращением аденозиндифосфата (АДФ) [c.311]

    Глутатион - один из трипептидов, играющих важную роль в иммунной системе живого организма он участвует в окислительно-восстановитель-ных процессах в клетке при обезвреживании токсических веществ. Реакция с эпоксидами - еще одна важная его биохимическая функция. [c.508]

    Часто в окислительно-восстановительной реакции возникают активные промежуточные продукты и наблюдается автокатализ. В таких системах нередко наблюдается осциллирующий режим протекания процесса. Исключительно важную роль окислительно-восстановительные реакции играют в живом организме, где они составляют основу ферментативных процессов дыхания, фиксации азота и удаления вредных для организма продуктов. [c.510]


    Окислительное расщепление жирных кислот — универсальный биохимический процесс, протекающий во всех видах живых организмов. У млекопитающих этот процесс происходит во многих тканях, в первую очередь в печени, почках, сердечной и скелетной мышцах. В клетке окисление жирных кислот локализовано в матриксе митохондрий. [c.328]

    Биологическая деструкция - зто деструкция под действием ферментов, вырабатываемых живыми организмами - грибами, бактериями, насекомыми и др. По сравнению с полисахаридами лигнин более устойчив к биологической деструкции. В то же время, некоторые виды грибов, разрушающих древесину, так называемые грибы белой гнили, более активно воздействуют на лигнин, чем полисахариды, вызывая гидролитическую и окислительную деструкцию. В связи с этим ставится задача поиска грибов, более избирательно воздействующих на лигнин, с целью создания экологически безопасной биотехнологии производства целлюлозы, которая позволила бы осуществлять этот процесс в более мягких условиях без использования химических реагентов. [c.425]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Обмен веществ в живых организмах в качестве одной из важнейших составляющих включает дыхательные процессы, которые базируются на обратимых окислительно-восстановительных превращениях комплексов Ре, Со с порфиринами. [c.290]

    Все живые организмы, включая простейших прокариот, отделены от окружающей среды клеточной мембраной. При этом роль мембран не ограничивается просто механическим отделением содержимого клетки. Они необходимы также для протекания некоторых основополагающих для живой материи процессов, в первую очередь производства АТФ. Как при окислительном фосфорилировании, так и при фотосинтезе сложный надмолекулярный комплекс, вмонтированный в мембрану, обеспечивает создание трансмембранного градиента концентрации протонов, за счет которого и происходит фосфорилирование АДФ. [c.431]

    Полагают, что одним из основных естественных источников серы в тропосфере является эмиссия НгЗ, обусловленная процессами разложения микробами живых организмов и продуктов их жизнедеятельности, наблюдающимися преимущественно на болотистых площадях [285]. Хорошо известно, также, что в слабо проточных морях (например. Балтийском и Черном) в глубинных водах скапливается колоссальное количество НгЗ. Однако до сих пор неясно, способен ли НгЗ в значительных количествах преодолевать окислительный фильтр , который должны представлять для него богатые. кислородом поверхностные воды. Существуют данные, относящиеся к побережью Панамы и о. Барбадос [220], согласно которым концентрация сернистого газа снижается по мере удаления от побережья в глубь материка. С другой стороны, в работе [142] и более раннем исследовании [235] не обнаружено ни в поверхностных водах, ни в атмосфере над ними присутствия НзЗ. [c.16]

    Вместе с тем супероксид может быть вовлечен в некоторые процессы, вызывающие окислительное повреждение здоровых клеток, что ведет к дегенерации и старению живого организма. Нормальное функционирование системы ферментов предотвращает эти нежелательные процессы. [c.176]

    Величина Гщ является одним из очень важных признаков протекания процессов в живых организмах. В биологии определяют Гщ в отдельных клетках растения и животной ткани. Для этого пользуются кислотно-основным и окислительно-восстановительным индикаторами. [c.495]

    Помимо железопорфириновых соединений существует большое число не содержащих гем белков, участвующих во многих окислительно-восстановительных процессах. Они содержат относительно много серы и железа, и поэтому получили еще название железо-серопротеины [248]. Эти соединения широко распространены в природе, встречаясь во всех живых организмах, и их физиологическая функция заключается скорее в переносе электронов, чем в [c.373]

    В заключение необходимо отметить роль, которую никотинаденинди-нуклеотид (НАД) играет в живых системах. Это один из наиболее важных коферментов. Он регулирует не только содержание этанола, но и другие окислительно-восстановительные процессы в организме. Среди важнейших биохимических процессов, в которых участвует НАД , можно назвать процесс ферментативного расщепления глюкозы и сопряженное с ним превращение лимонной кислоты, регулирующее клеточное дыхание. [c.56]

    Не менее важную функцию выполняет фосфор, входящий в состав аденозинфосфорных кислот, в процессах постоянного энергетического обмена клетрк живого организма. Аденозинфосфорные кислоты помогают запасать и постепенно расходовать энергию за счет окислительно-восстановительных процессов. Фосфор в виде кристаллических соединений типа фосфата кальция служит строительным материалом костных тканей высших животных фосфором богаты наиболее развитые формы живой материи — нервная и мозговые ткани. [c.88]

    Современная биология широко использует физическую химию. Все процессы в живом организме связаны с превращением вещества и энергии, а именно эти превращения изучает физическая химия. Основоположник отечественной физиологии И. М. Сеченов писал Физиолог — это физико-химик, имеющий дело с явлениями в животных организмах . Ту же мысль высказал позднее другой выдающийся физиолог — И. П. Павлов ...клетка в некотором отношении похожа на физико-химичес-кую лабораторию. Понятно, что там надо ждать и всех тех явлений, которые бывают при физико-химических процессах . Для иллюстрации справедливости этих высказываний достаточно перечислить некоторые актуальные проблемы современной биологии, решение которых основано на применении законов физической химии термодинамика и энергетика биопроцессов, осмотические явления и мембранные равновесия, окислительно-восстановительные процессы и редокс-потенциалы в физиологических средах, кинетика биологических процессов, ферментативный катализ и т. д. [c.8]

    Таким образом, альдегидо- и кетонокнслоты связаны взаимными окислительно-восстановительными превращениями с оксикислотами. Превращения такого рода играют большую роль в химических процессах, протекающих в живых организмах, а также прп некоторых процессах брожения. [c.217]

    Большинство химических реакций, протекаюи их в приборах, заводских реакторах, живых организмах и в природе, — это реакции окисления-восстановления. Такие реакции широко используются в аналитической химии для открытия, разделения и количественного определения веш,еств. Сущность окислительно-восстановительных реакций заключается в переходе некоторого числа электронов от восстановителя к окислителю. Процессы растворения металлов в воде, растворах кислот, оснований и солей также являются окислительно-восстановительными. [c.90]

    Хемилюминесценция — люминесценция (свечение) тел, вызванная химическим воздействием (напр,, свечение фосфора при медленном окислении). X. связана с экзотермическими химическими процессами. Х протекающая в живых организмах (свечение насекомых, червей, рыб), называется биолюминесценцией и связана с окислительными процессами. См. Люминесцетщя. [c.148]

    В животных организмах диоксид углерода непрерывно образуется в больших количествах в результате окислительных процессов, поставляющих энергию, необходимую для их жизни. Диоксид углерода, образовавшийся в живых тканях, должен быстро переносится кровью от места синтеза к легким, где он выделяется. Кровью переносится также кислород, но в обратном направлении. В кровеносных сосудах тканей, где создается высокое парциональное давление диоксида углерода, кровь растворяет СО2, которая затем выделятся в легких, где парциональное давление этого газа мало. [c.15]

    Появление Оз открыло новые возможности для совершенствования системы получения живой клеткой энергии из химических соединений. Формируется способ получения энергии, основанный на глубоком окислении неорганических и органических соединений окружающей среды. (Органические соединения — теперь. соединения, имеющие биогенное происхождение.) Этот способ связан с созданием новой системы электронного транспорта, в принципе сходной, но не идентичной фотосинтетической системе переноса электронов, и сопряженного с ней механизма фосфорилирования —окислительного фосфорилирования. Последний, по современным представлениям, аналогичен механизму фотофосфорилирования. В группах эубактерий обнаружено огромное разнообразие типов жизни, у которых основным источником энергии служит окислительное фосфорилирование. Различия заключаются в природе доноров и акцепторов электронов. Таким образом, все современные способы получения энергии живыми организмами сформировались на уровне прокариотной клеточной организации и их становление может быть прослежено в эубактериальной ветви. В процессе дальнейшей эволюции развитие получили только наиболее совершенные варианты. [c.438]

    Достижения физики и химии на рубеже 18—19 вв. (формирование законов сохранения материи и энергии, открытие Оа и На, выяснение хим. сущности горения) обусловили развитие исследований окислительных, фотосинт. и др. метаболич. процессов в живой клетке. С сер. 18 в. начинается период выделения и идентификации индивиотальиых орг. в-в растит, и животного происхождения. К 30-м гг. 19 в. были открыты и исследованы могие орг. к-ты (муравьиная, уксусная, молочная, лимонная и др.), глицерин, мочевина, глюкоза, холестерин, ряд алкалоидов, первые аминокислоты (глицин и лейцин) и др. Однако невозможность их синтеза в то время хим. путем привела к ложному представлению о существовании жизненной силы , определяющей сущность живого организма.. Начало науч. опровержению этих идеалистич. представлений было положено в 1828 осуществленным Ф. Велером хим. синтезом мочевины. [c.76]

    Гем-белки присутствуют во всех живых организмах и играют важную роль в процессах переноса кислорода, а также как переносчики электронов в окислительно-восстановительных реакциях и как ферменты. Гем-группа входит в активный центр всех таких белков, но характер биологической функции каждого из них зависит от природы связанных с гемом лигандов, структуры и конформации окружающих его полипептидных цепей, с которыми он взаимодействует, а также от степени окисления атома железа в центре порфиринового кольца. Гем-группа в миоглобине и гемоглобине— это железосодержащий протопорфирин или протогем IX , в котором железо связано с четырьмя атомами азота. [c.367]

    Нам казалось, что растения являются более подходящим объектом для экспериментальной проверки роли кислорода атмосферы и кислорода воды в процессе окислительного распада органического вещества в живых организмах. Это обусловлено, во-первых, тем, что растения удаляют углекислоту дыхания непосредственно из тканей в атмосферу во-вторых, растения обладают значительно менее активной угольной антидразой, чем животные [7]. Исходя из этих соображений, опыты с применением тяжелой воды (Н О ) и молекулярного кислорода, обогащенного О, , мы проводили на растениях. [c.125]


Смотреть страницы где упоминается термин Окислительные процессы живых организмов: [c.192]    [c.17]    [c.245]    [c.29]    [c.144]    [c.90]    [c.50]    [c.23]    [c.54]   
Смотреть главы в:

Что такое горение -> Окислительные процессы живых организмов




ПОИСК





Смотрите так же термины и статьи:

Живые организмы



© 2025 chem21.info Реклама на сайте