Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железо маскирование

    Прямым комплексонометрическим титрованием можно определять многие ионы металлов магния, кальция, стронция, бария, скандия, иттрия, лантаноидов, титана, циркония, гафния, тория, ванадия, молибдена, урана, марганца, железа, кобальта, никеля, меди, серебра, цинка, кадмия, ртути, галлия, индия, таллия, свинца, висмута. Скачок кривой титроваиия при этом находят с помощью подходящего индикатора или физико-химического метода. Если титруемый раствор содержит несколько ионов металлов и реальные константы устойчивости соответствующих комплексонатов мало отличаются между собой, эти ионы титруются вместе. Когда логарифмы реальных констант отличаются более чем на 4 единицы, ионы металлов можно титровать последовательно, допустив при нахождении первого скачка погрешности, не превышающие 1%. На практике это условие выполняется довольно редко и возможности прямого комплексонометрического титрования обычно расширяют маскированием. [c.225]


    Растворимость осадка в присутствии посторонних комплексообразователей маскирование. Реакции образования комплексов широко используются в качественном и количественном анализе для разделения катионов ( маскирование ). Так, например, известно, что разделение ионов железа и меди основано на действии избытка аммиака, причем медь образует растворимый аммиакат, а железо осаждается в виде гидроокиси. [c.43]

    Иногда для маскирования используют о к и с л ит е л ь и о - восстановительные реакции. Мешающий элемент при этом переводят в другую степень окисления. Примерами могут служить комплексонометрические титрования циркония (IV) или тория (IV) в присутствии ионов железа (III). Титрования проводят при pH 1,5—2, и лоны железа (III) в таких условиях мешают определениям. Мешающее влияние устраняют восстановлением железа аскорбиновой кислотой до железа (II). Количественные расчеты здесь затруднены в связи с отсутствием достоверных данных по константам устойчивости комплексонатов и гидроксокомплексов циркония (IV) и тория (IV). Однако из рис. 45 можно сделать качественную оценку видно, что. при pH 2 логарифм реальной константы устойчивости комплексоната железа (И) меньше единицы. [c.237]

    Наиболее простой способ маскирования заключается в установлении соответствующей кислотности титруемого раствора. Так, например, ионы железа (III), галлия (III), индия (III), таллия (III), висмута (III), циркония (IV), тория (IV), комплексонаты которых имеют 1 /( >20, можно титровать в сравнительно кислой среде (рН 2), в которой реальные константы устойчивости соответствующих комплексонатов еще достаточно велики. Двухзарядные ионы металлов при этом практически не мешают (см. рис. 45). Аналогично при pH 5 раствором комплексона III можно титровать такие ионы, как А1 +, Со +, N 2+, Си +, 2п +, С(12+, в присутствии ионов щелочноземельных металлов. [c.225]

    Фторид-ионы широко используют для маскирования многих ионов. Так, при иодометрическом определении меди влияние ионов Ре +, когорые окисляют иодид-ионы, устраняют фторидом. Образовавшийся фторидный комплекс железа не окисляет иодид-ионы. [c.267]

    Изменение степени окисления маскируемых ионов. В примере с маскированием ионов железа восстановлением хлоридом олова можно его вновь окислить до Ре + и восстановить таким путем способность железа реагировать с роданид-ионами. [c.534]

    В этих случаях происходят обменные реакции. Некоторое небольшое количество воды всегда присутствует, поглощаясь из воздуха, что благоприятствует протеканию обменных реакций. Получению интенсивно окрашенных соединений способствует предельно концентрированное состояние реагирующих твердых веществ в порошкообразном виде. Растирание твердых веществ исключает приемы систематического анализа (осаждение, фильтрование, промывание). Однако маскирование сопутствующих элементов применяется. Например, для обнаружения кобальта в присутствии железа (П1) роданидом калия можно образующийся роданид железа разрушить тиосульфатом натрия, переведя Ре + в Ре +, после чего вместо красно-бурой появляется синяя окраска комплекса кобальта (II). [c.137]


    Окислительно-восстановительные реакции применяют, когда для демаскирования необходимо изменить степень окисления. Например, если при pH 2 для устранения взаимодействия комплексона с ионами железа (III) последние восстановлены до ионов железа (И), для демаскирования следует железо (II) окислить до степени окисления -ЬЗ. Окислительно-восстановительные реакции используют также для разрушения органических лигандов, выполняющих роль маскирующих агентов. Например, если для маскирования ионов металла применены этилендиаминтетраацетат-ионы, их разрушают окислением в кислой среде перманганат-ионами. [c.246]

    Цианид-ионы образуют устойчивые комплексы со многими ионами металлов. Их можно использовать для маскирования таллия (III), никеля (II), железа (II), палладия (II), платины (II), серебра (II), меди (II), цинка (II), кадмия (II), ртути (II) и некоторых других ионов. Однако применять цианид-ионы для этой цели можно только в щелочной среде рК л = 9,3. Кислотная форма (ПСЫ) не только летучая, а также сильно ядовитая. Сильный яд также и сами цианид-ионы. [c.238]

    Иногда для маскирования используют окислительновосстановительные реакции. Мешающий элемент при этом переводят в другую степень окисления. Примерами могут служить комплексонометрические титрования циркония (IV) или тория (IV) в присутствии ионов железа (III). Титрования проводят при [c.243]

    Влияние небольших количеств железа можно устранить, связывая ионы Fe в комплексные ионы. Длй такого маскирования Применяют фториды или ПИрофосфаты, например [c.421]

    Влияние катионов. С оксихинолином более 40 элементов образуют окрашенные комплексы. Условия их образования (pH осаждения) см. на стр. 32. Ввиду малой специфичности метода существенное значение имеет устранение влияния мешающих элементов. Для их маскирования широко применяются цианиды. Железо предварительно восстанавливают сульфидом или сульфитом. Применение цианидов бывает настолько эффективно, что оказывается возможным определять 0,0001% алюминия, например, в никеле [137]. Перекись водорода применяется для маскирования элементов, образующих пероксидные комплексы [144, 646, 657 867]. [c.119]

    Маскирование смесью КСЫ и (NH4)a O, U На железо вводят поправку [457] [c.122]

    Степин и сотрудники [3781 предлагают определять алюминий в трансформаторной стали без предварительного отделения мешающих элементов, используя тиогликолевую кислоту для их маскирования. Очевидно, очень малые количества алюминия этим методом определять нельзя, так как большие количества железа будут мешать вследствие образования фиолетового комплекса Ре (III) с тиогликолевой кислотой. [c.213]

    Заслуживает внимания тенденция соединений 2.3.19—2 3 21 к маскированию трехвалентных катионов. железо(1П) маскируется до рН=10,5—И (для 2.3.7 до рН=5—7), соединение 2.3 20 маскирует алюминий(1П) при рН=6—7. Наблюдается маскирование лантаноидов, причем преимущественно более тяжелых эрбий, тулий, иттербий, лютеций маскируются в отличие от остальных лантаноидов, выпадающих в виде малорастворимых комплексонатов при рН=4,5—6 [73] [c.248]

    Этот комплексон является одним из лучших лигандов для маскирования иона железа(П1) lg/ ML = 39,68 (при 25°С и ц = 0,1) [656] [c.364]

    Второй способ устранения нежелательного влияния катиона металла заключается в его маскировании и широко применяется в аналитической химии для определения одних катионов на фоне других, в текстильной и бумажной промышленности для отбеливания тканей и бумаги [связывание ионов железа(П1)], в пиш евой промышленности при очистке продуктов от катионов, катализирующих процессы окисления и прогоркания жиров, в химической промышленности. При этом маскируемый катион остается в рабочем растворе, но благодаря связыванию его в высокоустойчивый комплексонат не может вступать в характерные для него реакции и другие взаимодействия. В качестве маскирующих реагентов используются либо полидентатные комплексоны универсального действия для связывания большой группы катионов, либо высокоселективные хеланты для избирательного воздействия на определенный катион, не затрагивающего ионы других металлов. При выборе хеланта для конкретных условий учитываются относительная устойчивость образуемых им комплексонатов рассматриваемой группы катионов, их растворимость, кинетика окислительно-восстановительных реакций, кинетика комплексообразования, каталитические свойства. [c.440]

    Мешают ионы Fe +, которые заведомо должны отсутствовать. В присутствии ионов Ре +, в аммиачной среде дающих осадок Ре(ОН)з, добавляют сегнетову соль или фторид аммония для комплексования (маскирования) железа (III). [c.66]

    Медь(П) и железо(1П) мешают, если их содержание в анализируемом растворе превышает соответственно 0,25 и 0,19 мг/мл их мешающее влияние устраняют введением в исходный раствор хлорида олова(И). Присутствие до 10 мг/мл вольфрама(У1) и до 0,4 мг/мл ванадия(У) не мешает, если в анализируемый раствор предварительно вводить хлорид олова(П). Мешающее влияние больших количеств вольфрама(У1) устраняют маскированием щавелевой кислотой [5361. [c.70]


    При. маскировании винной кислотой [894] кобальт. можно отделять от ионов алю.миния, железа, хрома, циркония, а также вольфра.ма, тантала, ниобия и. молибдена. Большое количество титана, ниобия и тантала трудно удержать в растворе винной кислотой в этом случае рекомендуется. маскировать фторидом натрия. [c.68]

    Определяя кобальт в этилендиаминовых растворах, железо связывают лимонной кислотой или сульфосалицилатом натрия [528] однако в первом случае марганец образует с цитратом комплекс, который титруется феррицианидом калия вместе с кобальтом. Маскирование сульфосалицилатом натрия дает возможность последовательно титровать кобальт и марганец в одном и том же растворе, причем сначала окисляется кобальт, а затем — марганец до трехвалентного. Скачок потенциала для кобальта выражен при этом очень отчетливо. [c.110]

    Катионы трехвалентного железа и меди образуют с реагентом соединения бурого цвета, катионы двухвалентного железа— зеленого. Однако эти соединения разрушаются при нагревании с соляной или азотной кислотой, и таким путем около 1 мкг кобальта можно определить в присутствии 100 мкг меди и 1000 мкг железа [1129]. В случае очень больших количеств этих элементов их следует отделить или замаскировать. Для маскирования железа можно применять фторид натрия [1166, 1313], а для его отделения — экстрагировать диэтиловым эфиром из солянокислых растворов. Небольшие количества никеля, марганца, титана, ванадия, хрома не мешают допустимо также присутствие до 3000 мкг ионов свинца, ртути (И), олова (IV), цинка, церия (111), марганца, молибдена (VI) и уранила. [c.139]

    Никель мешает только зеленой окраской своих растворов. В присутствии небольших количеств никеля можно проводить определение, измеряя оптическую плотность с желтым светофильтром или вообще без светофильтра, если количество никеля превышает содержание кобальта не больше, чем в десять раз [1256]. Можно также удалять осадок пирофосфата никеля [120], если пирофосфат применяется для маскирования железа. [c.156]

    Рабочий интервал значений pH прц определении фторида находится в области pH 4,5—12 для 10 —10 М фторида, а для меньших концентраций фторида — в области pH 4,5—8. Положительный дрейф потенциала обусловлен протонизацией фторида с образованием НР и НЬ 2 . В щелочных растворах происходит отрицательное отклонение потенциала вследствие замещения ионов фторида в кристаллической решетке ЬаРз ионами гидроксила, так как величины их ионных радиусов близки. Эти помехи в случае необходимости можно устранить, используя специальные буферные смеси, например буфер регулирования общей ионной силы (БРОИС) с pH 5,0—5,5, содержащий 0,25 М СНзСООН 0,75 М СНзСООЫа 1,0 М КаС1 и 10 3 М цитрата натрия (для маскирования железа и алюминия). [c.121]

    Ионы железа (111) мешают реакции вследствие образования роданидов железа, окрашенных в кроваво-красны цвет, поэтому синее окрашивание, вызываемое (Со(5СЫ)4Г, становится незаметным. С целью маскирования Fe " " к исследуемому раствору добавляют фториды, фосфаты, оксалаты и др., образуюш,ие с ионамн железа (ill) в сильнокислой среде устойчивые комплексные соединения, не мешающие открытию ионов кобальта. [c.78]

    При определении никеля для устранения мешающего действия висмута, железа и кобальта ионы последных маскируют введением тиогли-колевой кислоты. Небольшие количества ионов кобальта и железа можно маскировать также добавлением винной кислоты. Для маскирования больших количеств этих ионов зекомендуют прибавлять в раствор добавки К,К-ди(оксиэтилен)глицина. [c.228]

    Красный раствор при этом обесцвечивается. Реакцию используют также для маскирования катионов железа(Ш) при открытии кагионов кобальта(П) в виде тиоцианатных к<)Мплексов кобальта(Ш) синего цвета в присутствии фторид-ионов железо(1П) связывается в прочные бесцветные комплексы [FeFe] и не мешает открытию катионов кобальта(П). [c.448]

    Фторид-ионы с ионами алюминия (III), железа (III), сурьмы (III), скандия (III) образуют комплексы [МеРеР-. С ионами титана (IV), циркония (IV), тория (IV), олова (IV), церия (IV) они образуют комплексные ионы [МеРеГ . Поэтому фторид-ионы можно использовать для маскирования перечисленных элементов. Работать можно в довольно кислой среде, так как для протолитической пары маскирующего лиганда р/Сл=3,2. [c.238]

    Цитрат- и тартрат-ионы применяют для маскирования ионов алюминия (III), железа (III), титана (IV), циркония (IV), свинца (II) и ряда других ионов металлов. В случае лимонной кислоты р А, 3 = 6,4, следовательно, цитрат-ионы могут быть использованы в качестве маскирующих агентов только в щелочной и нейтральной средах. Тартрат-ионы пригодны для этой цели также в слабокнслой среде (в случае винной кислоты р/гл, 2 = 4,4). [c.238]

    Комплексы с другими неорганическими лигандами. Устойчивые цианидные комплексы образуются с ионами меди, кадмия, цинка, железа(П1) и железа (II), кобальта, никеля и др. Однако в связи с большой ядовитостью цианид мало применяют в анализе. Его использование в анализе ограничивается маскированием посторонних ионов при определени некоторых ионов другими методами, хотя в принципе возможно использование цианида в качестве титранта. [c.268]

    Большое значение в аналитической химии имеют фосфатные комплексы. Их широко применяют для маскирования, например, железа(III) при фотометрическом определении титана в виде пероксидного комплекса. При этом железо маскируют фосфорной кислотой оно образует растворимые в воде бесцветные комплексы [FeHP04]+, [Fe (904)2] или [Ре(Р04)з] -. [c.268]

    Влияние катионов и анионов. Осаждение оксихинолината алюминия из ацетатного буферного раствора не избирательно, не мешают в значительных количествах лишь Mg, Ве, ш,е-лочные и щелочноземельные металлы. Бы. ю проведено много исследований с целью найти способы маскирования мешающих элементов. Особенно много работ по определению алюминия в растворах, содержащих железо. Попытки осаждать железо и алюминий фракцион-но ири различных pH не дали удовлетворительных результатов [747]. [c.36]

    Влияние анионов. Большие количества хлоридов, нитратов и сульфатов не мешают определению алюминия [750]. Не мешают бромиды и иодиды [646]. Перхлораты не мешают до 1 М концентрации. Если ЗЮа находится в истинном молекулярном растворе, то не мешает при соотношении А12О3 ЗЮз = 1 4. В присутствии полимеризованной ЗЮг при соотношении больше 1 4 результаты завышаются на 10°/о и выше. Перед определением алюминия целесообразно обрабатывать анализируемый раствор едким натром для перевода ЗЮа в молекулярную форму [109]. Фториды уже в количестве 10 мкг мешают экстракции оксихинолината алюминия, введение борной кислоты не устраняет их влияния [646]. При определении алюминия в тории небольшие количества фторидов (до 500 мкг) не мешают, так как торий связывает фторид в прочный комплекс [957]. Согласно Джентри и Шеррингтону [750], до 0,15 г фосфатов мало влияет на определение алюминия, но > 200 л/сг фосфорной кислоты мешает восстановлению железа [646]. До 0,2 г тартрата в 50 мл раствора мешает мало [750] по другим данным, допустимо 0,3 г винной кислоты в 80 мл раствора [869]. Поэтому винную кислоту используют для маскирования небольших количеств железа [869]. 0,3 г винной кислоты маскирует 5,6 мкг железа. Некоторые авторы вводят винную кислоту для удержания алюминия в растворе в щелочной среде. В стандартные растворы в этом случае также вводят такие же количества винной кислоты. [c.121]

    Разделение гидроокисью аммония с маскированием кобальта шавелевой кислотой. Отделение железа от кабальта гидроокисью аммония не дает хороших результатов из-за соосаждения кобальта с осадком гидроокиси железа. Для улучшения разделения прибавляют щавелевую кислоту, которая связывает кобальт в комплекс. [c.72]

    В более ранних работах [405, 880, 1517] сравнивали непосредственно окрашенный водный раствор комплекса с серией стандартных растворов визуально, нли применяли метод разбавления или измеряли светопоглощение на спектрофотометре при 550 ммк. Этн методы, однако, имеют ряд недостатков [818]. Окраска комплекса кобальта с нитрозонафтолом маскируется избытком раствора нитрозонафтола. Нередко образуется муть или осадок нитрозонафтолата кобальта, что затрудняет определение. При определении в аммиачных цитратных растворах, которые применяют для маскирования железа, развитие окраски сильно зависит от концентрации NH4OH. В последующих методах использовали экстракцию нитрозонафтолатов кобальта различными органическими растворителями. В качестве экстрагентов предложено применять бенаол [542], толуол [428], хлороформ [1152, 1462], четыреххлористый углерод [1138], сероуглерод [508], изоамиловый спирт [497 и др. Эти растворители экстрагируют не только комплексы кобальта с нитрозонафтолами, но и избыток реагента. Для удаления нитрозонафтола из органического растворителя последний промывают раствором едкого натра или смеси раствора едкого натра с тартратом калия- а-трия, после чего измеряют оптическую плотность экстракта при 530 ммк. [c.136]


Смотреть страницы где упоминается термин Железо маскирование: [c.239]    [c.44]    [c.52]    [c.77]    [c.81]    [c.27]    [c.208]    [c.56]    [c.89]    [c.51]    [c.152]    [c.175]   
Фотометрический анализ (1968) -- [ c.150 , c.151 ]

Практическое руководство (1976) -- [ c.84 , c.311 , c.314 , c.352 , c.353 ]

Комплексонометрическое титрование (1970) -- [ c.137 , c.139 ]

Комплексные соединения в аналитической химии (1975) -- [ c.225 ]




ПОИСК





Смотрите так же термины и статьи:

Железо III маскирование фторид-ионами

Маскирование

Маскирование железа цианидом калия

Триэтаноламин маскирование железа, алюминия

Триэтаноламин, маскирование железа

Триэтаноламин, маскирование железа, аммония, марганца

Фторид-ион маскирование железа



© 2025 chem21.info Реклама на сайте