Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоэлектронная спектроскопи

    В катализаторе определяют содержание серебра, щелочноземельных металлов, щелочных металлов и таких вредных примесей, как тяжелые металлы, сера и галогены. Исследование физических свойств включает измерение поверхности методом БЭТ, обычно по криптону из-за малой площади поверхности. Для измерения пористости при контроле качества катализатора можно применять ртутную порометрию, несмотря на известную тенденцию серебра к амальгамированию, так как этот процесс сильно замедляется на окисленной поверхности. Состав поверхности катализаторов определяется современными методами, связанными с использованием высокого вакуума. Из них наиболее важны рентгеновская фотоэлектронная спектроскопия (РФЭС), масс-спектрометрия вторичных ионов (МСВИ) и электронная оже-спектроскопия (ЭОС). [c.240]


    ГЛАВА VII ПРИМЕНЕНИЕ МЕТОДОВ фотоэлектронной СПЕКТРОСКОПИИ В ХИМИИ [c.151]

    ИОНИЗАЦИОННЫЕ МЕТОДЫ МАСС-СПЕКТРОМЕТРИЯ, ИОННЫЙ ЦИКЛОТРОННЫЙ РЕЗОНАНС И ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ  [c.313]

    Методы фотоэлектронной спектроскопии, в частности ЭСХА, имеют большое преимущество перед рентгеновским поглощением в силу гораздо более высокой чувствительности и разрешающей способности. Пики в фотоэлектронных спектрах относительно более узкие, четкие и интенсивные, их положение, т. е. и сдвиги могут быть измерены с высокой точностью. [c.138]

    Некоторые из физических методов особенно широко исполь зуются в химических лабораториях, например спектроскопия ЯМР и ЭПР, спектрополяриметрия (ДОВ и КД), и поэтому они рассмотрены подробнее. В то же время с помощью менее распространенных методов, таких, как рентгеновская и фотоэлектронная спектроскопия (ФЭС), ядерный квадрупольный резонанс, мессбауэровская спектроскопия, эффект Фарадея и др., получают также чрезвычайно важную информацию, поэтому некоторые из этих методов стали быстро развиваться, например ФЭС, и применение их химиками постоянно расширяется. Вообще ценность любого метода проявляется только тогда, когда он применяется для решения конкретных химических задач, и особенно возрастает при совместном использовании с другими методами. [c.4]

    МЕТОДЫ РЕНТГЕНОВСКОЙ И ФОТОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ [c.133]

    Рентгеновская фотоэлектронная спектроскопия (РФЭС) Сканирующая электронная микроскопия (СЭМ) Электронная оже-спектроскопия (ЭОС) [c.12]

    Здесь имеются в виду методы, которые основываются на явлениях фотоэффекта, получаемого при использовании монохроматического электромагнитного излучения, и вторичной электронной эмиссии. Собственно фотоэлектронной спектроскопией (ФЭС) называют метод, в котором вещество облучают в вакуумной УФ области электромагнитного спектра. Приоритет открытия явления эмиссии фотоэлектронов в газах под действием УФ облучения, положившего начало развитию метода ФЭС, принадлежит Ф. И. Вилесову (СССР). В рентгеноэлектронной спектроскопии (РЭС, или ЭСХА, что означает электронная спектроскопия для химического анализа) используют монохроматическое рентгеновское излучение. Создателем этого метода применительно к изучению поверхности твердых тел является шведский ученый К. Зигбан. Для возбуждения эмисии электропов может использоваться также электронный пучок, тогда говорят о методе индуцированной электронной эмиссии спектроскопии .  [c.134]

    Статистика показывает, что по точности предлагаемые методы не уступают общепринятым, например, методами фотоэлектронной спектроскопии (ФЭС). Для зависимости (4.7) коэффициент корреляции 0,85 - довольно высокое значение. Из полученных результатов следует, что уравнение распространяется на вещества с ПИ < 9, 045 эВ, т.е. охватывает большинство органических веществ. С применением эффективных ПИ и СЭ был впервые доказан орбитальный контроль процессов карбонизации [12, 13, 19] и растворения нефтяных асфальтенов в органических растворителях [26-28]. Развиваемый в данной работе подход использован для направленного синтеза многокомпонентных систем и сольвентов и изучения сложных органических смесей [29]. [c.94]


    Представлены результаты исследований методами структурного анализа, рентгеновской фотоэлектронной спектроскопии, электронной микроскопии, ЭПР и магнитной восприимчивости активированных углеродных волокон (АУВ) с различной удельной поверхностью. [c.96]

    Отметим также следующие важные методы измерения в послесвечении, измерения в электронных и ионных пучках, фотоэлектронная спектроскопия, измерения метастабильных атомов и молекул, электрохимические методы, методы скачка температуры и (или) давления, ультразвуковые методы, ЯМР, ЭПР. [c.20]

    Раздел, посвященный фотоэлектронной спектроскопии, написан проф. Д. Хендриксоном из Иллинойского университета. [c.313]

    Столкновение фотонов с атомами или молекулами может привести к испусканию фотоэлектронов. В течение последних двух десятилетий фотоэлектронная спектроскопия развилась в многообещающую область химии. Фотоэлектронная спектроскопия отличается от описанных ранее спектроскопических методов, в которых измеряются характеристики поглощенного, испущенного или рассеянного электромагнитного излучения. В этом методе предмет изучения — кинетическая энергия испущенных при ионизации электронов. [c.331]

    Данные фотоэлектронной спектроскопии для газообразного азота (энергии выражены в эВ)  [c.338]

    Эффекты координации небольших молекул с переходными металлами можно исследовать методом фотоэлектронной спектроскопии. Спектры приве- [c.357]

    Особое место занимают такие методы анализа поверхностей, как комбинированная фотоэлектронная спектроскопия илн электронная оже-спектроскопия. Эти методы позволяют установить распределение элементов в слоях твердых тел, а также проводить градиентный анализ по глубине. Это физические методы исследования структуры, но с их помощью можно с, очень большой чувствительностью определить следовые количества элементов. Однако из-за высокой стоимости оборудования и необходимости высококвалифицированного обслуживающего персонала методы все еще применяют только в специализированных лабораториях. [c.417]

    Вообще учет зарядки образцов является одной из центральных методических проблем в фотоэлектронной спектроскопии, которая далеко еще не решена. В любом случае при публикации спектров должны указываться использованный стандарт и значение энергии, принятое за начало отсчета. [c.150]

    Уникальность методов рентгено- и фотоэлектронной спектроскопии — в возможности детального изучения тонких поверхностных слоев. При совместном использовании нескольких методов, включая применение оже-микрозонда, открывается возможность исключительно тонкого локального, а с ионным травлением — и профилированного послойного анализа твердых образцов с разрешением по поверхности 50—200 нм, а по глубине от 1 до нескольких нанометров. Уникальны также количественные энергетические характеристики, получаемые из фотоэлектронных спектров, и представляющие опорные данные для развития квантовой теории строения молекул и веществ. [c.165]

    Группа методов рентгено- и фотоэлектронной спектроскопии, включая оже-спектроскопию, позволяет получать данные об энергиях отрыва электро нов от атомов и молекул как с внешних — валентных оболочек, так и с внутренних оболочек атомного остова. Это эффективные методы структурных исследований и высокочувствительные неразрушающие аналитические методы изучения молекул в газовой фазе, поверхности твердых тел, биологических объектов и полимеров. Особенно широко и продуктивно они применяются в катализе, адсорбции, электронике, а также как методы прямого измерения энергетических характеристик электронных состояний атомов и молекул. Эти характеристики являются уникальными в отношении возможности сопоставления их с теоретическими представлениями и модельными расчетами. [c.133]

    Комбинированная фотоэлектронная спектроскопия и электронная оже-спектроскопия Искровая масс-спектроскопия (ИМС) [c.415]

    Вполне очевидно, что методы рентгено- и фотоэлектронной спектроскопии с успехом могут применяться для изучения явлений коррозии, отжига и т. п., связанных с окислением металлов и сплавов, а также диффузии, сегрегации элементов, например, на изломах при термической обработке и т. д. Широко используются рассматриваемые методы в современной микроэлектронике, открывая уникальные возможности контроля качества и обнаружения неисправностей уст- [c.164]

    Частично из-за потребности в монохроматическом излучении возникли два раздела фотоэлектронной спектроскопии. Рентгеновская фотоэлектронная спектроскопия, сокращенно обозначаемая как РФС или ЭСХА (электронная спектроскопия для химического анализа), использующая рентгеновские лучи в качестве источника ионизирующего излучения, изучает в основном электроны оболочки (т.е. невалентные электроны). Создание этого метода приписывают Сигбану и сотр. [27]. В ультрафиолетовой фотоэлектронной спектроскопии (УФС) используют ультрафиолетовое излучение, имеющее более низкую энергию, и, таким образом, исследуют энергии связи валентных электронов. Обязанная своим развитием главным образом Тернеру и его сотрудникам [28], УФС предназначалась не только для измерения энергий связывания валентных электронов, но и для наблюдения за возбужденными колебательными состояниями молекулярного иона, образующегося в процессе фотоионизации. [c.331]


    Главным практическим применением методов фотоэлектронной спектроскопии с уникальными возможностями и эффективностью является исследование поверхности твердых тел, тонких пленок и [c.134]

    Вся группа методов фотоэлектронной спектроскопии, как и методы рентгеновской спектроскопии (РФА и абсорбционной), могут [c.151]

    Методы рентгено- и фотоэлектронной спектроскопии в применении к явлениям адсорбции позволяют изучать и решать ряд проблем. С одной стороны, это идентификация продуктов на адсорбенте, исследование электронной структуры адсорбатов в зависимости от строения адсорбента и нахождение энергетических характеристик взаимодействия адсорбат — адсорбент. С другой стороны, это определение мест локализации адсорбированных молекул, поверхностной концентрации, степени покрытия поверхности, изучения кинетики адсорбции или каталитической реакции, выяснение механизмов адсорбции и каталитического действия металлов и сплавов и т. д. [c.162]

    В химических исследованиях с применением методов рентгено- и фотоэлектронной спектроскопии чаще всего интерес представляет не абсолютное значение энергии связи Есв (эВ), а ее изменение для данного электронного уровня атома одного и того же элемента в разных соединениях  [c.140]

    К большому сожалению, следует указать на то, что некоторые методы практически не используются в нашей стране из-за отсутствия соответствующей аппаратуры, что существенно снижает уровень исследований. Это касается частично новинок спектроскопии ЯМР, а также фотоэлектронной спектроскопии, колебательного кругового дихроизма, магнитного кругового дихроизма. Можно надеяться на то, что дальнейшее развитие научного приборостроения ликвидирует этот пробел. [c.264]

    Дайте определение химического сдвига в рентгено- и фотоэлектронной спектроскопии. [c.166]

    Проведен синтез углеродных нанотруб мегодом термического газофазного разложения углеводородов. Структура нанотруб (размер, ориента11ия, дефектность, наличие примесей других элементов и т.д.) регулировалась изменением параметров синтеза (температура, исходные углеродсодержащие вещества, вид катализатора и т.д.). Проведено комплексное исследование полученных материалов методами электронной микроскопии, рентгеновской спектроскопии, фотоэлектронной спектроскопии и рентгеновской дифракции. [c.124]

    И. Охарактеризуйте аналитические возможности методов рентгено- и фотоэлектронной спектроскопии. [c.166]

    Если рентгеновские спектры испускания, поглощения и флуоресценции были известны и стали применяться еще в первой половине нашего века, то новые методы анализа и исследования веществ, которые можно условно объединить под общим названием — методы фотоэлектронной спектроскопии, разрабатывались лищь в 50-х и 60-х годах параллельно в СССР, Швеции, Англии и США. Их применение в химии началось в конце 60-х, а соответствующие серийные приборы появились лишь в 70-х годах и постоянно совершенствуются. [c.134]

    Орбиталь углерода отличается по энергии от трех вырожденных р-орбиталей, поэтому четырем многоцентровым связывающим, орбиталям, несомненно, отвечают два разных уровня энергии 1 длягр1и 2 трижды вырожденный для 1 32, г з и 11)4. Существование именно двух уровней молекулярных электронов доказано экспериментально. Методом фотоэлектронной спектроскопии у СН4 установлены два первых ПИ с уровней Ь (12,51 эВ) и ах (22,39 эВ). [c.100]


Смотреть страницы где упоминается термин Фотоэлектронная спектроскопи: [c.331]    [c.154]    [c.202]    [c.386]    [c.131]    [c.166]    [c.264]    [c.277]    [c.282]   
Органическая химия (1990) -- [ c.51 , c.62 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.634 ]




ПОИСК





Смотрите так же термины и статьи:

Зверев, Ю. П. Китаев. Фотоэлектронная спектроскопия и реакционная способность органических соединений

ИОНИЗАЦИОННЫЕ МЕТОДЫ МАСС-СПЕКТРОМЕТРИЯ, ИОННЫЙ ЦИКЛОТРОННЫЙ РЕЗОНАНС И ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ

Молекулярная фотоэлектронная спектроскопия

Молекулярная фотоэлектронная спектроскопия (Тернер)

ПРИМЕНЕНИЕ ФОТОЭЛЕКТРОННОЙ СПЕКТРОСКОПИИ В АНАЛИТИЧЕСКОЙ ХИМИИ

Применение методов фотоэлектронной спектроскопии в химии

Применение фотоэлектронной, рентгеноэлектронной и рентгеновской спектроскопии для изучения валентных уровней

Рентгеновская фотоэлектрон нал спектроскопия РФЭС анализ поверхности мембран

Рентгеновская фотоэлектронная спектроскопия (РФЭС)

Рентгеновская фотоэлектронная спектроскопия замороженных растворов

Спектроскопия фотоэлектронная

Третий раздел. Методы рентгеновской н фотоэлектронной спектроскопии

Фотоэлектронная и рентгеноэлектронная спектроскопия

Фотоэлектронная спектроскопия глубина выхода

Фотоэлектронная спектроскопия и теорема Купманса

Фотоэлектронная спектроскопия объемные состояния

Фотоэлектронная спектроскопия плотность состояний

Фотоэлектронная спектроскопия поверхностные состояния

Фотоэлектронная спектроскопия работа выхода

Фотоэлектронная спектроскопия рентгеновская

Фотоэлектронная спектроскопия средняя длина свободного пробега

Фотоэлектронная спектроскопия ультрафиолетовая

Фотоэлектронная спектроскопия фотоэлектрон

Фотоэлектронная спектроскопия фотоэлектрон

Фотоэлектронная спектроскопия фотоэлектронный спектр

Фотоэлектронная спектроскопия функция выхода

Фотоэлектронная спектроскопия химический сдвиг

Фотоэлектронная спектроскопия экранирование

Фотоэлектронная спектроскопия эксперимент с угловым разрешением

Фотоэлектронная спектроскопия энергия связи

Фотоэлектронная спектроскопия, определение потенциала появления

Фотоэлектроны

Электронная спектроскопия для химического анализа (ЭСХА) или рентгеновская фотоэлектронная спектроскопия

Электронная спектроскопия для химического анализа ЭСХА фотоэлектронный спектр



© 2025 chem21.info Реклама на сайте