Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотоэлектронная и рентгеноэлектронная спектроскопия

    Фотоэлектронная и рентгеноэлектронная спектроскопия. В фотоэлектронной и рентгеноэлектронной спектроскопии изучают- [c.183]

    ФОТОЭЛЕКТРОННАЯ И РЕНТГЕНОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ [c.273]

    Этот метод исследования электронного строения молекулярных систем по их фотоэлектронам — в сущности фотоэлектронная или рентгеноэлектронная спектроскопия, — в литературе встречаются также под несколько неожиданным названием ЭСХА — электронная спектроскопия для целей химического анализа , хотя его основные применения меньше всего связаны с классической аналитической химией. [c.273]


    ПРИМЕНЕНИЕ ФОТОЭЛЕКТРОННОЙ, РЕНТГЕНОЭЛЕКТРОННОЙ И РЕНТГЕНОВСКОЙ СПЕКТРОСКОПИИ ДЛЯ ИЗУЧЕНИЯ ВАЛЕНТНЫХ УРОВНЕЙ [c.7]

    Рентгеноэлектронная спектроскопия по своим физическим основам идентична фотоэлектронной спектроскопии. Основное различие этих методов заключается в том, что для возбуждения спектров в рентгеноэлектронной спектроскопии применяются кванты гораздо большей энергии (обычно А1 /Са  [c.25]

    В. И. Нефедов. Валентные электронные уровни химических соединений (по данным фотоэлектронной, рентгеноэлектронной и рентгеновской спектроскопии). СТРОЕНИЕ МОЛЕКУЛ И ХИМИЧЕСКАЯ СВЯЗЬ . (Итоги науки и техники), 19 , 3, с. 5—175, библ. 544 [c.178]

    Очевидно, что выявление природы влияния атомов фтора немыслимо без привлечения прямых экспериментальных методов изучения электронной структуры молекул, таких как фотоэлектронная, рентгеноэлектронная и рентгеновская флуоресцентная спектроскопия, а также расчетных методов квантовой химии. Немногочисленные работы в этом направлении посвящены почти исключительно фторированным бензолам. [c.148]

    В настоящее время к исследованию закономерности начинают привлекаться такие методы современного исследования, как рентгеноэлектронная спектроскопия, метод ядерного квадруполь-ного резонанса и фотоэлектронная спектроскопия, позволяющие более полно учесть орбитальные взаимодействия электронов. [c.170]

    Качество полимерного материала характеризуется совокупностью его свойств, определяющих пригодность материала для использования в тех или иных целях. Современный уровень экспериментальной техники позволяет описать свойства материала на всех уровнях атомно-молекулярном (фотоэлектронная, рентгеноэлектронная и колебательная спектроскопия, ядерный магнитный резонанс, рассеяние нейтронов, эмиссионный анализ и т. д.) надмолекулярном (диэлектрическая и механическая релаксация, рентгенография, электронография, аннигиляция позитронов, рас- [c.327]

    Физическими можно назвать методы измерения свойств, относящихся к индивидуальным соединениям. Их применяли вначале для исследования кристаллических веществ, затем стали исследовать и растворы, выделяя параметры, относящиеся к индивидуальным комплексам в растворе. Такие исследования позволяют получить сведения о составе и строении внутренней сферы комплексов, об их симметрии, о распределении зарядов, типе и характере связи, полностью расшифровать структуру кристаллических комплексов и т. д. К физическим методам относятся дифракционные (рентгенография, электронография, нейтронография), спектральные методы в широком диапазоне длин волн (от УФ до радиочастотной), гамма-резонансная, рентгеноэлектронная и фотоэлектронная спектроскопия, исследования магнитной восприимчивости и др. [c.199]


    Метод рентгеноэлектронной (фотоэлектронной) спектроскопии позволяет определить значения эффективных зарядов на атомах в молекуле. Сущность метода состоит в облучении молекул жесткими квантами света. При этом происходит ионизация связанных в молекуле атомов за счет удаления глубинных электронов (например, Ь и т. д.). Энергия жесткого кванта рентгеновского или УФ-излучения расходуется на ионизацию связанного атома (энергия ионизации Е) и кинетическую энергию выбитого электрона, равную > /иу т. е.  [c.131]

    Метод этот настолько нов, что еще не окончательно -утрясен вопрос, как его называть. Дело в том, что по традиции электронными называли спектры поглощения веществом УФ- и видимого света, связанного с возбуждением (а не удалением) электронов. Теперь это название применяется реже, но тем не менее возникает дополнительная путаница, поскольку метод, о котором пойдет речь, называют то фотоэлектронной, то рентгеноэлектронной, то просто электронной спектроскопией. Его создатели — группа шведских физиков во главе с К- Зигбаном — первоначально назвали метод электронной спектроскопией для химического анализа — ЭСХА. [c.257]

    Уже в пятидесятые годы был накоплен обширный экспериментальный материал по первым потенциалам ионизации молекул, однако потенциалы ионизации более глубоких валентных электронных уровней даже для простейших соединений за единичными исключениями были неизвестны. Информационный взрыв начался в конце шестидесятых годов, когда развитие фотоэлектронного метода открыло перед исследователями обширную и практически нетронутую область работы. К настоящему времени исследованы сотни соединений в газообразном состоянии и начато изучение твердых тел с помощью фотоэлектронного метода. Весьма эффективным для измерения энергий ионизации валентных и внутренних уровней в газах и твердых телах оказался рентгеноэлектронный метод, также оформившийся к концу шестидесятых годов. С середины шестидесятых годов началось применение рентгеновской спектроскопии для определения энергии валентных уровней свободных молекул и характера их волновых функций и заметно возрос объем рентгеноспектральных исследований электронной структуры твердых тел. [c.5]

    В последние годы методами фотоэлектронной и рентгеноэлектронной спектроскопии удалось измерить первые ПИ не только с ВЗАО, но и с других, в том числе глубинных атомных орбиталей (орбитальные ПИ). Например, для атома углерода при одной и той же конфигурации 1з 2з 2р первые ПИ с 2р-ВЗАО и глубинной 2з-АО равны соответственно 11,26 и 20 эВ. [c.38]

    Здесь имеются в виду методы, которые основываются на явлениях фотоэффекта, получаемого при использовании монохроматического электромагнитного излучения, и вторичной электронной эмиссии. Собственно фотоэлектронной спектроскопией (ФЭС) называют метод, в котором вещество облучают в вакуумной УФ области электромагнитного спектра. Приоритет открытия явления эмиссии фотоэлектронов в газах под действием УФ облучения, положившего начало развитию метода ФЭС, принадлежит Ф. И. Вилесову (СССР). В рентгеноэлектронной спектроскопии (РЭС, или ЭСХА, что означает электронная спектроскопия для химического анализа) используют монохроматическое рентгеновское излучение. Создателем этого метода применительно к изучению поверхности твердых тел является шведский ученый К. Зигбан. Для возбуждения эмисии электропов может использоваться также электронный пучок, тогда говорят о методе индуцированной электронной эмиссии спектроскопии .  [c.134]

    Энергию ионизации I можно определить также методом электронного удара по величине потенциала К ускоряющего поля, вызывающего ионизацию 1 = еУ. Для большинства атомов потенциалы ионизации найдены из предела схождения линий в спектрах. Для редкоземельных элементов был применен метод поверхностной ионизации атомов на раскаленном вольфраме, разработанный Н. И. Ионовым с сотрудниками. В последние годы для определения потенциалов ионизации атомов и молекул широко используется метод фотоэлектронной спектроскопии (ФЭС), предложенный Ф. И. Вилесовым, Б. Курбатовым и А. И. Терениным (1961) и развитый Тернером (1962, Великобритания), а также метод рентгеноэлектронной спектроскопии (РЭС). [c.58]

    Для H.a. примешпот методы рентгенофлуоресцентного, активационного, рентгенорадиометрич. анализа и др. Когда спец. подготовки образца х анализу не требуется, H.a. можно проводить методами локального анализа (ионный микроанализ, электронно-зондовые методы, методы фотоэлектронной и рентгеноэлектронной спектроскопии, масс-спектрометрия вторичных ионов и др.). [c.220]

    НЕРАЗРУШАЮЩИЙ АНАЛИЗ (недеструктивный анализ), анализ в-в, в ходе к-рого геом. размеры, масса, хим. состав, структура и св-ва образца не изменяются или изменяются настолькй мало, что это не влияет на возможность его дальнейшего использования. Для Н. а. применяют методы активационного, рештенорадиометрич. и рентгенофлуоресцентного анализа, фотоэлектронной и рентгеноэлектронной спектроскопии, электроннозондовые методы и др. НЕРЖАВЕЮЩИЕ СТАЛИ, см. Сталь. [c.374]


    РЕНТГЕНОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ (РЭС, электронная спектроскопия для хим. анализа, ЭСХА), метод исследования строения в-ва, основанный на явлении фотоэффекта с использ. монохроматич. рентгеновского излучения. В РЭС, как и в фотоэлектронной спектроскопии, измеряют кинетич. энергию фотоэлектронов по закону сохранения энергии определяют энергии связи Еса как внутр., так и внеш. электтюнов в атомах и молекулах. Для возбуждения спектров ооычно использ. Ха-линии А1 н Mg (энергия кванта составляет 1486 и 1255 эБ соотв.), реже А -линии У и , а также синхротронное излучение. Энергетич. спектры фотоэлектронов измеряют в рентгеновских фотоэлектронных спектрометрах. Погрешность определения Ксв для ТВ. тел 0,1 эВ, для газов 0,05 эВ шири-аа полос реитгеноэлектронного спектра 1—2 эВ. [c.507]

    ФОТОЭЛЕКТРОННАЯ СПЕКТРОСКОПИЯ (ФЭС), метод исследования строения в-ва, основанный на явлении фотоэффекта с использ. монохроматич. УФ излучения. При облучении в-ва происходит поглощение фотона с энергией ftv (А — постоянная Планка, V — частота излучения), соп-мвождающееся эмиссией электрона с кинетич. энергией Екия. Измерив кия, можно рассчитать потенциал ионизации Ев атома или молекулы по закону сохранения энергии Ау = и + Якия. Для фотоионизации использ. обычно линии Не(1) (Av = 21,2 эВ), Не(П) (Av = 40,8 эВ), Ме(1) (ЙУ = 16,8 эВ), а также монохроматизиров. синхротронное излучение со значениями Лу < 10 эВ (излучение с большими энергиями использ. в рентгеноэлектронной спектроскопии). Энергетич. спектры фотоэлектронов (т. е. распределение электронов по энергиям) измеряют в фотоэлектронных спектрометрах, осн. элементы к-рых — источник ионизирующего излучения, анализатор энергий электронов (электростатич. илн магнитный) и детектор электронов. Погрешность определения Екия 0,005 эВ. Каждому электронному уровню соответствует своя полоса (шириной 0,02 эВ) или часть полосы спектра. [c.634]

    Относительно недавно появился еще один физический метод анализа — электронная спектроскопия для химического анализа (ЭСХА), которую называют также рентгеноэлектронной спектроскопией. В основе метода — явление рентгеновского фотоэффекта, метод пригоден для изучения твердых, в частности органических, веществ. Эффективный слой твердого вещества для выхода фотоэлектронов составляет приблизительно 10 нм, поэтому рентге-ноэлектронная спектроскопия перспективна для изучения состава поверхностных слоев и пленок. Важно только, чтобы вещество не разлагалось под действием рентгеновских лучей или вакуума, исследуемая поверхность должна быть чистой. Относительная ошибка определения может быть доведена до 1—2%, определять можно все элементы, кроме водорода. К сожалению, точные аналитические характеристики метода не вполне установлены. В СССР первые работы по ЭСХА начались в Институте общей и неорганической химии АН СССР (В. И. Нефедов). Приборы для анализа и исследования вещества этим методом выпускают несколько зарубежных фирм — Вариан (США, Швейцария), Хьюлет-Паккард (США), Вакуум Дженерейторс (Англия). [c.74]

    Рентгеноэлектронная спектроскопия (РЭС) основана на НИИ фотоэффекта с использованием монохроматического геиовского излучения и позволяет определять энергии электрон-, ных уровней на основании измеренных кинетических энергий фотоэлектронов. Теория метода была заложена. еще в 19С г., когда А. Эйнштейн вывел уравнение для фотоэффекта [c.9]

    Рентгеновская фотоэлектронная или рентгеноэлектронная спектроскопия основана на измерении кинетической энергии фотоэлектронов, испускаемых веществом под действием квантов рентгеновского излучения с известной энергией. Уравнение Эйнштейна для фотоэффекта позволяет определить энергию ионизации или энергию связи электронов в=/tv—Екаа. В качестве источников рентгеновского излучения (рис. 23.8), используют обычные рентгеновские трубки с анодами из Си, Сг, А1, Mg, которые дают -излучение с энергией 8048, 5415, 1487, 1254 эВ. Для улучшения разрешающей способности спектрометра существенна монохроматизация рентгеновских лучей (с помощью фильтров или кристалл-монохроматоров). [c.578]

    В электронной спектроскопии определяется кинетическая энергия электронов, испускаемых веществом, что позволяет судить о потенциалах ионизации молекул, а тем самым и об энергии связи электронов внутри молекул или входящих в их состав атомов. Для органической химии основное значение имеет фотоэлектронная спектроскопия, получившая такое название потому, что электрон выбивается из молекул квантами высокой энергии при облучении вещества монохроматическим рентгеновским или ультрафиолетовым излучением. Отсюда названия этих видов фотоэлектронной спектроскопии рентгеноэлектронная спектроскопия (РЭС) и молекулярная фотоэлектронная спектроскопия [109] или фотоэлектронная спектроскопия с УФ-возбуждением (УФЭС) [110]. Разновидности электронной спектроскопии, основанные на других способах генерации электронов, не имеют такого значения для органической химии, как фотоэлектронная спектроскопия. [c.259]

    Рентгеноэлектронная спектроскопия. Наиболее информативным и одновременно достаточно простым методом определения зарядов на атомах в молекулах является рентгеноэлектронная спектроскопия, которую называют также электронной спектроскопией для химического анализа [89, 90]. Этот метод основан на ионизации внутренних электронов под действием рентгеновского излучения. По известной энергии ионизирующих фотонов Е = hv) измеряют кинетическую энергию фотоэлектронов Разность между этими величинами — это энергия Есв, которую нужно преодолеть находящемуся в атоме (связанному) электрону при фотоионизации Е = — Е . Обычно химики пренебрегают учетом свойств электронов на внутренних энергетических уровнях, которые не влияют (или почти не влияют) на образование химических связей однако химическое окружение атомов зависит от энергии удержания внутренних электронов в атоме. На рис. 4.37, а представлен спектр 15-фотоэлектронов атомов углерода в этилтрифторацетате. Каждому из четырех атомов С отвечает свой пик в спектре самой электроположительной группе (СНз) отвечает наименьшее значение Ясв, а самой электроотрицательной (СРз) — наибольшее значение Есв Атомы Р, как электроотрицательные заместители, увеличивают положительный заряд на атоме С в группе СРз, а следовательно, повышают эффективный ядерный заряд и энергию ионизации 1я-электрона. [c.129]

    Методом рентгеноэлектронной спектроскопии получено много корреляций [91—94]. Так, в работе [95] показано хорошее соответствие Есв для ls-фото-электронов атома углерода в галогензамещенных метанах с электроотрицательностью и числом агомов галогена в молекулах. Рис. 4.38 иллюстрирует линейную зависимость между Есв для З -фотоэлектронов соединений молибдена и зарядом на атоме Мо, рассчитанным по Полингу [96]. В этой же работе изучались замещенные карбонилы молибдена и было доказано сильное Рп — -взаимодействие между лигандом СО и атомом Мо. Изучение более 100 комплексов тринадцати переходных элементов позволило выявить также 0- и я-связывание в них, что доказывает влияние электроотрицательности лигандов на Есв электронов в атоме металлов [97]. Об этом свидетельствует зависимость, представленная на рис. 4.39 величина АЕсв (разность между Есв для свободного атома металла и атома металла в комплексе) есть линейная функция электроотрицательности лиганда. [c.130]

    Следует заметить, что в последние годы метод рентгеноэлектронной спектроскопии все чаще применяется к комплексным соединениям, а интерпретация его результатов проводится квантовохимическими методами. В разд. 4.2 мы еще вернемся к результатам фотоэлектронной спектроскопии, а сейчас перейдем к анализу последнего наиболее универсального метода определения эффективных зарядов атомов в кpи тaллax-диэлектрического метода Сцигети (см. обзор [24]). [c.210]

    Следует заметить, что в соответствии с ориентацией собственных научных интересов авторов, книга приобрела определенный уклон в сторону более подробного анализа спектров фотоэлектронов из внешних (обычно валентных) оболочек молекул (УФЭС). Получить более полное представление о методе помогут две опубликованные в СССР книги, посвященные в основном спектроскопии фотоэлектронов с рентгеновским возбуждением. (рентгеноэлектронная спектроскопия — РЭС). Это перевод книги Зигбана и др. Электронная спектроскопия ( Мир , М., 1971) и обзор В. И. Нефёдова Строение молекул и химическая связь ( Итоги науки и техники , ВИНИТИ, М., 1973, т. 1). Кроме того, редактор и переводчик сочли необходимым дать ряд примечаний и привести списки дополнительной литературы по этому разделу метода. [c.6]

    Квантово-химические расчеты и экспериментальные данные, полученные методами фотоэлектронной и рентгеноэлектронной спектроскопии, свидетельствуют, что верхней заполненной орбиталью ацетонитрила Hз N является я-молекулярная орбиталь, а орбиталь, заполненная неподеленной электронной парой, расположена ниже. В бензонитриле СвН5С=М самыми высокими по энергии являются л-орбитали фенильного кольца. Несмотря на это, нитрильные комплексы с металлами образуются не за счет я-молекулярной орбитали, а за счет неподеленной электронной пары атома азота. [c.146]

    Как пояснялось в 2, фотоэлектронная спектроскопия — это метод изучения валентных уровней и полос газов и, отчасти, твердых тел. Основная область применения рентгеноэлектронной спектроскопии — это изучение внутренних электронных уровней твердых тел и, отчасти, газов [53, 54]. Наряду с внутренними уровнями изучаются также и валентные. В связи с большей кинетической энергией фотоэлектронов увеличивается глубина их выхода из твердого тела по сравнению с фотоэлектронными спектрами — это несколько-уменьшает требования к отсутствию поверхностных загрязнений. Однако очистка шоверхпости при изучении валентных полос в твердом теле остается одной из трудных задач при проведении рентгеноэлектронного эксперимента. Очистка по-верхшости образца может быть достигнута в результате обработки поверхности ионами благородных газов в процессе электрического разряда. Однако в этом случае есть опасность восстановления образца или образования аморфной пленки на его поверхности. Для получения незагрязненных поверхностей используют также скол монокристалла в условиях вакуума, размельчение в атмосфере инертного газа- [c.25]

    При исследовании гетерогенных контактов может быть использовано несколько типов электронной спектроскопии взаимно дополняющих друг друга. Рентгеноэлектронная спектроскопия (электронная спектроскопия для химического анализа, ЭСХА) [439] основана на измерении кинетической энергии фотоэлектронов при возбуждении монохроматическим рентгеновским излучением. Тот же принцип лежит и в основе фотоэлектронной спектроскопии [139], однако энергия возбуждающего излучения в этом случае ниже. В Оже-спектроскопии [440] изучается эмиссия электронов некоторых внешних оболочек (Оже-электронов) при действии на образец электронного, ионного или рентгеновского излучения. Метод абсорбционной рентгеновской спектроскопии высокого разрешения (ЕХАРЗ) позволяет одновременно определять расстояние между атомами металла на поверхности, координационное число и энергию связи электрона в атоме. Некоторые проблемы, воз-ликающие при практическом применении данных методов, рассмотрены в [441]. [c.210]

    Теорема Купманса свидетельствует о том, что канонические хартри-фоковские молекулярные орбитали могут служить в качестве тех элементов, которые не меняются в определенном приближении при переходе от молекулы к ее катиону. В зависимости от орбитальной энергии канонической орбитали получается целый спектр потенциалов ионизации, зарегистрировать которые можно с помощью фотоэлектронной (при / 30 эВ) и рентгеноэлекгронной спектроскопии (при / - 200 - 500 эВ). При этом теорема Купманса, не учитывающая многие эффекты, в частности орбитальные различия молекулы и катиона (так называемую орбитальную релаксацию), специфику межэ-лектронного взаимодействия (электронную корреляцию) и др., дает обычно точность порядка 1 - 2 эВ в фотоэлектронной области и порядка 1 - 5 эВ в рентгеноэлектронной области. [c.291]

    Рентгеноэлектронную и фотоэлектронную спектроскопию объе- иняет термин электронная спектроскопия , охватывающий так-<е и оже-спектроскопию. [c.217]

    Е8СА — электронная спектроскопия для химического анализа . В советской литературе обычно терминологически различают фотоэлектронную (ФЭС) и рентгеноэлектронную (РЭС) спектроскопию. — Прим. перев. [c.267]

    Можно ожидать, что метод исследования, применимый ко всем химическим элементам, позволяющий их обнаруживать и получать информацию о структуре вещества, будет иметь большое значение и в аналитической химии. Хотя пока аналитических работ, выполненных по фотоэлектронным спектрам, относительно мало, тем не менее имеющиеся данные свидетельствуют о его больших возможностях. Так, в частности, ФЭС испытана как метод анализа поверхностей и определения структуры молекул, а УФЭС с использованием некоторой информации из ИК- и ЯМР-спектро-скопии — для изучения орбитальных взаимодействий. Понятно, что в условиях таких комплексных исследо-. ваний можно лучше изучить вещество, но это не означает, что информацию, полученную методом УФЭС, можно также получить из ИК- и ЯМР-спектроскопии или масс-спектрометрии. Развитие методики фотоэлектронной спектроскопии и совершенствование способов интерпретации спектров происходит быстрыми темпами, так что многогранность метода вскоре станет очевидной. Учитывая чувствительность метода, возможности изучения поверхностных явлений и информацию, которую ФЭС уже дает по соединениям хлора, серы и фосфора, можно с уверенностью сказать, что это спектрометрический метод большого значения. В настоящее время многих привлекает больше рентгеноэлектронное, направление метода. Однако УФЭС дешевле, имеет относительно большие возможности для развития и теоретическую опору в методе молекулярных орбиталей, поэтому оба раздела фотоэлектронной спектроскопии равно могут быть приняты на [c.131]

    Введение атомов фтора в бензольное кольцо приводит к существенным возмущениям его электронной системы. Электроотрицательные атомы, фтора вызывают появление эффективных положительных зарядов на атомах углерода (см. данные спектроскопии ЯМР [4]) и понижение электронной плотности в области между ними (области С—С о-связей), что сопровождается, по данным фотоэлектронной [5, 6] и рентгеноэлектронной [7—9] спектроскопии, значительным понижением энергии а-молекуляр-ных орбиталей (МО). В то же время изменение энергии Л.-МО ароматических колец значительно меньше [10]. Очевидно, что свойства арюматических и полифторароматических соединений, связанные со структурой и энергией я-МО, не будут принципиально отличаться. В то же время в силу изменения порядка расположения и состава занятых а-МО при переходе от ароматических соединений к полифторароматическим следует ожидать существенных различий в реакционной способности этих типов соединений. [c.99]


Смотреть страницы где упоминается термин Фотоэлектронная и рентгеноэлектронная спектроскопия: [c.184]    [c.579]    [c.250]    [c.29]    [c.3]    [c.178]    [c.29]   
Смотреть главы в:

Электронное строение и свойства координационных соединений Издание 2 -> Фотоэлектронная и рентгеноэлектронная спектроскопия




ПОИСК





Смотрите так же термины и статьи:

Применение фотоэлектронной, рентгеноэлектронной и рентгеновской спектроскопии для изучения валентных уровней

Фотоэлектронная спектроскопи

Фотоэлектронная спектроскопия фотоэлектрон

Фотоэлектроны



© 2025 chem21.info Реклама на сайте