Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Никель ванадием

    Следует иметь в виду, что по мере углубления отбора солярового дестиллата при вакуумной перегонке мазута коксуемость дестиллата увеличивается кроме того, в нем повьппается концентрация соединений, понижающих активность катализатора (соединения железа, никеля, ванадия и меди, содержащиеся- в незначительных количествах в нефтях и в выделяемых из них соляровых дестиллатах). Загрязняя катализатор, эти металлы оказывают неблагоприятное влияние на его свойства. С увеличением загрязнения катализатора примесями уменьшается выход бензина и повышаются выход кокса и количество водорода в газах крекинга. [c.28]


    Поскольку деасфальтизаты содержат повышенное количество металлов по сравнению с соляровыми дистиллятами, то во избежание порчи больших масс катализатора накапливающимися примесями железа, никеля, ванадия и т. д. переработку такого сырья на некоторых заводах сосредоточивают на одной установке каталитического крекинга и разбавляют его прямогонными фракциями. При переработке деасфальтизатов, как и других нестойких в условиях процесса крекинга высокомолекулярных видов сырья, необходимо весьма тщательно контролировать и регулировать работу реактора во избежание быстрого и чрезмерного коксоотложения на катализаторе. [c.215]

    В результате же гидроочистки плотность, вязкость и зольность газойля уменьшаются коксуемость по Конрадсону снижается значительно, но температура плавления изменяется мало большая часть металлов (никель, ванадий) удаляется. Групповой углеводородный состав изменяется в сторону увеличения содержания моно- и полинафтеновых и особенно моноароматических углеводородов на 10— 18 % (масс.) [13]. [c.53]

    Тяжелый мазут, содержащий 2,5 51, 0,01—0,02% золы, которая состоит в основном из окисей никеля ванадия и натрия [c.183]

    Результаты анализа ряда нефтей на железо, никель, ванадий и медь приводятся в табл. 1-19. [c.45]

    Содержание, вес. % никеля ванадия Литературный источник [c.24]

    В отличие от щелочных металлов, никель, ванадий, железо, хром и другие тяжелые металлы не изменяют кислотности катализатора. Не происходит существенных изменений и в пористой структуре. Исследователи [45, 54, 132] пришли к выводу, что при отложении тяжелых металлов физические свойства алюмосиликата не меняются, а образуется поверхностный слой, обладающий совершенно иными каталитическими свойствами. В результате металлы оказывают существенное влияние на активность катализа- [c.139]

    Содержание металла, вес. % никеля ванадия [c.150]

    Механизм отравления и промотирования катализатора металлами. В литературе существует мнение, что металлы могут влиять на качество катализатора двояко. Такие металлы, как никель, ванадий, железо и другие, снижают активность и избирательность катализатора [45, 64, 202, 213] щелочные металлы, например натрий, уменьшают только активность катализатора не изменяя избирательности [45]. [c.171]

    Отравление обоих видов рассматривается в работе [45], где изучалось влияние различных концентраций никеля, ванадия, железа, меди, свинца и натрия на результаты крекинга и качество катализатора. Металлы наносили на катализатор пропиткой его водными растворами солей. Ванадий вводили в виде метаванадата аммония, а натрий — в виде ацетата. Остальные металлы вводили в виде нитратов. Чтобы избежать попадания в катализатор посторонних примесей растворы солей металлов приготовляли в двукратно дистиллированной воде, а все сосуды перед употреблением тщательно очищали, промывали и споласкивали также двукратно дистиллированной водой. Пропитанные образцы высушивали при 90 °С, а затем прокаливали в воздухе при 600 °С в течение 2 ч для разложения солей металлов до окислов и полного удаления летучих веществ. Выходы продуктов крекинга в стандартных условиях на полученных образцах катализатора приведены в табл. 48 [45]. Там же приводятся данные о кислотности, удельной поверхности и поровой характеристике этих образцов. [c.171]


    Из табл. 48 видно, что никель, ванадий, железо, медь, свинец уменьшают активность катализатора и избирательность уменьшается выход бензина, увеличивается выход газа и кокса. При этом кислотность катализатора не изменяется. Данных о влиянии металлов на удельную поверхность и поровую характеристику катализатора в этой работе очень мало. [c.171]

    Деасфальтизация с применением селективных углеводородных растворителей [103 обеспечивает практически полное удаление асфальтенов и большей части содержащихся в остатке металлов (никель,ванадий, железо. натрий) без какой-либо деструкции сырья. Получаемые после деметаллизации и деасфальтизации сернистых и высокосернистых остатков продукты требуют обязательного гидрообессеривания. В отличие от прямого гидрообессеривания остатков предварительная де-асфальтизация селективными растворителями позволяет осуществлять последующее гидрообессеривание деасфальтизатов в смеси с вакуумными газойлями при значительно более низком давлении водорода, чем гидрообессеривание мазута II,I2D.  [c.62]

    Производительность большинства установок обычно ограничена не пропускной способностью реактора, а мощностью регенератора, т. е. возможностью выжигания в нем определенного количества кокса при заданном режиме. Обычно в реакторах каталитического крекинга перерабатывают сырье с коксуемостью до 0,25%- По мере углубления отбора вакуумного дистиллята увеличивается не только его коксуемость, но и концентрация в катализаторе примесей, понижающих его активность (соединений железа, никеля, ванадия и меди). [c.19]

    В сырье каталитического крекинга, как процесса селективного, должно быть ограничено содержание смолисто-асфальтовых веществ и соединений, имеющих в своем составе никель, ванадий и азот. Указанные компоненты сырья каталитического крекинга, во многом определяя выход целевых продуктов и кокса, а также расход и активность катализатора, существенно влияют на техникоэкономические показатели процесса [7, 13]. [c.64]

    Результаты определения концентрации металлов в щариках тех же размеров, выбранных из общей массы циркулирующего равновесного катализатора, показали, что при работе катализатора возрастает концентрация имеющихся металлических примесей и дополнительно откладываются никель, ванадий и цинк. Из кривой / рис. 1 видно, что концентрация металлов в частицах равновесного катализатора в пределах точности определений также остается постоянной, но во всех случаях выше, чем в свежем [c.112]

    Из щелочных и щелочно-земельных металлов увеличивается содержание натрия — на 36%, магния — на 62% и кальция на 41%. Количество титана, железа, марганца и хрома увеличивается соответственно на 11,2% 35,0% 50% и 80%. Содержание никеля, ванадия и цинка составляет 0,0130 0,0097 и 0,0645% соответственно. [c.113]

    Элементный состав битумов следующий (%) 80—85 углерода 8—11,5 водорода 0,2—4 кислорода 0,5—7 серы 0,2—0,5 азота а также металлы (никель, ванадий, железо, натрий). Они представляют собой сложную коллоидную систему, состоящую из асфальтенов, высокомолекулярных смол и масел асфальтены придают твердость и высокую температуру размягчения смолы повышают цементирующие свойства и эластичность масла являются разжижающей средой, в которой растворяются смолы и набухают асфальтены. [c.397]

    Шелезо Сера Никель ванадий Углерод [c.126]

    Оонозными причинами ненормального старения являются 1) дей твие на катализатор некоторых газов при высокой темпера-туре — аммиака, сернистого газа и особенно сероводорода 2) влияние на свойства катализатора ряда сернистых соединений, особенно тех, из которых в условиях каталитического крекинга образуются сероводород и сернистый газ 3) накопление на катализаторе окислов металлов (железа, меди, никеля, ванадия, натрия и др.), содержащихся в виде примесей в сырье 4) действие на катализатор высокой температуры и водяного пара при высокой температуре. [c.52]

    Первоначально, перед самым первым рабочим пробегом, установка загружается свежим катализатором, имеющим активность 35—38 единиц. 1Под влиянием частой регенерации катализатора, контактирования о с перегретым водяным паром, загрязнения продуктами коррозии трубопроводов и аппаратов и отравления примесями (соединения никеля, ванадия, железа и др.), содержа- [c.84]

    Средний молекулярный вес их равен 24—28. С увеличением концепт рация в газах водорода, что может иметь место, например, при накоплении на катализаторе металлов (никель, ванадий и др.), плотность газов снижается. Потоки газов, отводимых из газосе-параторов крекинг-установок, а также из абсорберов, содержат большее или меньшее количество инертных газов, в некоторых случаях до 10% по объему, считая на сухой газ. Инертные газы вносятся в реактор катализатором и затем поступают вместе с продуктами реакции в секцию фракционирования. [c.233]

    Как показала практика эксплуатации заводской установки гудрезид, при крекинге легкого мазута (удельный вес около 0,893, суммарное содержание никеля, ванадия, железа 0,002%, содержание кокса по Рамсботтому 3% вес.) образуется приблизительно 40- 43% вес. дебутанизированного бензина, 8—10% вес. газа (Сз и легче), 8—9,5% вес. фракции С4 и 6—8% вес. кокса. Выход легкого и тяжелого каталитических газойлей составляет около 31% вес., а водорода 19—26 м на 1 jtt жидкого мазута. Получаемый при этом бензин (без фракции С4 и добавки ТЭС) имеет октановое число 79,1—79,9 и 88,4—93,0 соответственно по моторному и исследовагельскоАгу методам. Содержание серы в бензине [c.245]


    С утяжелением мазута выход бензина понижается, а выход окса существенно возрастает. Установки гудрезид проектируются так, чтобы не допустить снижения избирательности катализатора, которое может быть вызвано накоплением на нем тяжелых металлов (никель, ванадий), содержащихся в тяжелых остаточных видах сырья. Кроме того, предусматривается возможность переработки на гаких установках не только мазутов, но и соляровых дистиллятов. [c.246]

    Имеются сведения [149], что синтетическпе (не природные) тетрафепилпорфирины никеля, ванадия, железа и меди могут возгоняться при пониженном давлении без разложения. Теория летучести подтверждается экспериментами по возгонке металл-порфириновых соединений при температурах порядка 220— 300 С [150]. [c.46]

    Сырьем для производства смазочных масел служат нефтяные фракции, выкипающие выше 350 °С. В этих фракциях концентрируются высокомолекулярные соединения нефти, представляющие собой сложные многокомпонентные смеси углевюдородов различных грушп и их гетеропроизводных, в молекулах которых содержатся атомы кислорода, серы, азота и некоторых металлов (никеля, ванадия и др.). Компоненты масляных фракций обладают различными свойствами, и содержание их в готовых маслах может быть полезным и необходимым или вредным и нежелательным. Поэтому наиболее распространенным путем переработки масляных фракций для получения масел является удаление из них нежелательных компонентов при максимально возможном сохранении желательных , способных обеспечить готовым продуктам необходимые физико-химические и эксплуатационные свойства. [c.7]

    Рекламируется возможность использования процесса изомакс для облагораживания нефтяных остатков (процесс R D-Isomax). Так, из нефтяных остатков, содержащих 3,0—4,2% серы, 0,035—0,102% никеля - -+.ванадия и 42—54% асфальтенов, выход жидких продуктов 101,9—102,6 объемн. %, в том числе 99,3— 100 объемн. % фракции выше 177° С с содержанием сэры 1% [c.78]

    Для всех процессов гидрокрекинга характерна общая проблема— борьба с осаждением (отложениями) металла на катализаторах. Так как большинство сырых и топливных нефтей содержат то или иное количество золообразующих соединений металлав, таких, как соли и органические комплексы натрия, кальция, железа, никеля, ванадия и других, они не могут быть конвертированы в более легкие жидкие фракции или газы без одновременного образования не растворимых в углеводородах солей металлов. В результате интенсивного выпаривания легких продуктов соли металлов отлагаются как на катализаторе, так и на металлических ловерхностях. [c.140]

    При исследовании снижения селективности у катализатора в процессе крекинга было установлено, что одной из причин старения катализатора является отравление металлами. Результаты лабораторных опытов показали [64], что железо, никель, ванадий и медь, содержащиеся в некоторых видах нефтяного сырья, адсорбируются и накапливаются на катализаторе. Даже ничтожные количества (0,007 7о) этих металлов ухудщают селективность катализаторов и снижают выход бензина. Селективность катализатора в работе [64] оценивается коксовым и газовым фактором — отноще-нием выхода кокса или газа на исследуемом катализаторе к выходу кокса или газа на исходном (стандартном) катализаторе при одной и той же степени превращения. Ухудшение селективности при содержании на катализаторе перечисленных выше металлов выражается в резком повышении коксового и газового фактора. [c.148]

    Равновесная активность катализатора по методу Атлантик Д + П Фактор коксообразования Содержание металлов на равновесном катализаторе 10 -вес. % железо никель ванадиу медь [c.236]

    Внедрение в 1960-х годах в промышленность каталитического 1<рекинга высокоактивных цеолитсодержаш,их катализаторов значительно улучшило избирательность и экономические показатели процесса. Использование цеолитсодержащих катализаторов позволило повысить мощность установок каталитического крекинга, вовлечь в переработку трудно крекируемое сырье, повысить выход высокооктанового компонента бензина при одновременном снижении коксообразования и выхода легких газов. Цеолитсодержащие катализаторы обладают значительно большей активностью и селективностью, чем аморфные алюмосиликаты, они меньше подвержены отрицательному воздействию тяжелых металлов (никеля, ванадия). Высокая активность катализатора сокращает время реагирования до 1—8 с. [c.168]

    Очистка бензольных- углеводородов в присутствии водорода осуществляется в газовой фазе над катализатором. Целевыми реакциями очистки являются гидрообессеривание и гидрирование ненасыщенных углеводородов. При получении бензола высокой степени чистоты определяющими являются реакции гидрообессе-ривання, особенно гидрогенолиз наиболее термически стабильного соединения — тиофена. Катализаторами гидрообессеривания могут быть сульфиды или оксиды молибдена, кобальта, вольфрама, никеля, ванадия. В промышленности широко распространен алюмокобальтмолибденовый катализатор. [c.224]

    В некоторых работах [148, 155, 156] отмечается успешное применение катализатора АНМ при приготовлении котельного топлива с содержанием серы ниже 1% (масс.) деасфальтизацией мазута с удалением из него 90—95% никеля, ванадия, порфиринов и асфальтенов с последующей гидроочисткой деасфальтизата при 15—30 МПа, 360—440°С, расходе водорода 0,45% (масс.). Японские исследователи считают, что при прямой и косвенной гидроочистке котельного топлива для наиболее эффективного катализатора АНМ средний радиус пор составляет преимущественно >100 А. Кроме того, активны катализаторы, полученные в результате двухстадийной пропитки, при которой вначале вносится окись молибдена (12—15%), а затем — окись никеля (4—5%) [148]. [c.255]


Смотреть страницы где упоминается термин Никель ванадием: [c.108]    [c.40]    [c.66]    [c.45]    [c.113]    [c.11]    [c.218]    [c.148]    [c.123]    [c.78]    [c.248]    [c.104]    [c.103]    [c.84]    [c.112]    [c.19]    [c.19]    [c.57]   
Новые окс-методы в аналитической химии (1968) -- [ c.144 , c.149 ]




ПОИСК







© 2024 chem21.info Реклама на сайте