Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Замещение правила ориентации

    Мета-замещение. — Правила ориентации полезны для предсказания главных продуктов реакций замещения, но они говорят лишь о преобладающем, а не об исключительном продукте реакции. Тщательное количественное изучение реакций замещения было проведено голландскими химиками Голлеманом, Вибо и др. Для определения точного соотношения присутствующих в реакционных смесях даже малых количеств изомеров, получающихся при различных реакциях замещения (обычно при нитрований), они пользовались физическими методами анализа. [c.138]


    Правила ориентации — взаимосвязь между природой заместителей в исходном ароматическом соединении, природой атакующей частицы и строением конечного продукта в реакциях замещения. [c.376]

    Сформулируйте правила ориентации у производных нафталина в реакциях электрофильного замещения. Назовите продукты, которые должны образоваться в следующих реакциях  [c.201]

    Реакции фотозамещения могут протекать как по радикальному, так и по гетеролитическому механизмам. В возбужденном состоянии меняется реакционная способность различных положений ароматического ядра, поэтому меняются правила ориентации при замещении по сравнению с основным состоянием  [c.232]

    Селенофен легче, чем бензол, вступает в реакции электрофильного замещения, причем, как и в случае фурана и тиофена, -положения более активны, чем р-положения. Это лучше всего можно объяснить с точки зрения резонансной стабилизации или делокализации положительного заряда в промежуточном катионе, которая больше в образующемся при а-присоединении интермедиате (26), чем в интермедиате (27), возникающем при р-присоединении, когда двойная связь С-4—С-5 не может участвовать в делокализации положительного заряда по мезомерному механизму. Для селенофена нет четко установленных правил ориентации электрофильного замещения, но независимо от того, какой заместитель находится в положении 2, последующее электрофильное замещение происходит главным образом в положение 5. Изучение кинетики электрофильного и нуклеофильного замещения показало, что в этих реакциях селенофен активнее тиофена. [c.343]

    Дибензотиофен вступает в обычные для ароматических соединений реакции замещения. При этом получаются главным образом 2-производные 4-замещенные образуются лишь в очень небольшом количестве. Если исходить из 2-замещенных производных дибензотиофена, то второй заместитель входит в положение 8. Правила ориентации в ряду дибензотиофена аналогичны правилам, действующим в ряду дибензофурана и, повидимому, обусловлены о,л-ориентирующим влиянием гетероатома (серы), что видно из приведенной ниже формулы. [c.128]

    Сформулированные правила ориентации пригодны только в случае гетеролитических замещений. Что касается замещений в ароматическом ядре по гомолитическому (радикальному) механизму, то они протекают по иным законам. [c.27]

    ЭЛЕКТРОФИЛЬНОЕ ЗАМЕЩЕНИЕ В ПРОИЗВОДНЫХ БЕНЗОЛА. ПРАВИЛА ОРИЕНТАЦИИ [c.166]

    ПРАВИЛА ОРИЕНТАЦИИ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ЗАМЕЩЕННЫХ БЕНЗОЛА С ПОЗИЦИИ ТЕОРИИ МО [c.172]


    Правила ориентации (замещения) в бензольном кольце. Заместители (ориентанты) 1-го рода направляют последующее замещение преимущественно в орто- и лора-положения. К ним относятся следующие группы ——ОН, -МН ,-С1(-Г,—Вг,-1). [c.334]

    Приведенные выше примеры нитрования бензолов с электроноакцепторными заместителями в ароматическом кольце еще раз показывают, что правила ориентации позволяют определить только основное направление реакций ароматического электрофильного замещения [c.136]

    Важное значение имеют правила ориентации (замещения) в бензольном кольце. Если в бензольное кольцо ввести заместитель, то происходит перераспределение электронной плотности в кольце. Место вступления второго заместителя в бензольное кольцо определяется природой уже имеющегося заместителя. [c.320]

    Активирующая группа — заместитель, под влиянием которого возрастает реакционная способность ароматического ядра по сравнению с бензолом в реакциях электрофильного или нуклеофильного замещения. См. также Правила ориентации в бензольном ядре. [c.13]

    ПРАВИЛА ОРИЕНТАЦИИ В ЭЛЕКТРОФИЛЬНОМ АРОМАТИЧЕСКОМ ЗАМЕЩЕНИИ [c.435]

    Правила ориентации в электрофильном ароматическом замещении [c.437]

    ПРАВИЛА ОРИЕНТАЦИИ И РЕАКЦИОННАЯ СПОСОБНОСТЬ ЗАМЕЩЕННЫХ БЕНЗОЛОВ С ПОЗИЦИИ ТЕОРИИ МОЛЕКУЛЯРНЫХ ОРБИТАЛЕЙ [c.444]

    Правила ориентации замещенных бензолов с позиции теории МО 445 [c.445]

    Правила ориентации при реакциях электрофильного замещения в ряду производных бензола [c.219]

    Электронодонорные заместители [К = СНз, ОСН3, К(СНз)2] стимулируют образование орто- и пара-продук-тов, а электроноакцепторные (К = СООН, ЗОзН, КОз)-л<ета-продуктов, причем в первом атучае р-ция идет легче, чем с незамещенным бензолом (К = Н), а во втором-труднее. Эти закономерности наз. правилами ориенх ации в ароматическом ряду. При нутслеоф. замещении правила ориентации обращаются. [c.213]

    Приведите правила ориентации в бензольном ядре и механизм электрофильного и нуклёофильного замещения в ароматическом ядре. [c.122]

    Рассмотрите правила ориентации для реакций в -тина с учетом статического фактора (распределения электронной плотности в нереагирующей молекуле) и динамического фактора (сравнения устойчивости а-комплексов при о-, м- и -замещении) на следующих примерах I) нитробензоле, 2) анилине, 3) анизоле (ме-тнлфениловом эфире), 4) бензальдегиде. Какие положения в бензольном ядре этих соединений наиболее благоприятны для замещения электрофильными реагентами ( +)  [c.150]

    В гетероциклических системах различные положения тоже неэквивалентны и к ним применимы такие же правила ориентации, как и к другим циклическим системам. Замещение в фу-ране, тиофене и пирроле направляется главным образом в положение 2 и идет быстрее, чем в бензоле [64]. Пиррол особенно активен, его реакционная способность приближается к реакционной способности анилина и фенолят-иона. В случае пиридина [65] атака происходит не на само свободное основание, а на его сопряженную кислоту — ион пиридиния [66]. Положение 3 обладает наивысшей реакционной способностью, но общая активность пиридина значительно ниже, чем бензола, и аналогична нитробензолу. Однако в положение 4 пиридина можно вводить группы косвенным путем, проводя реакцию с соответствующим Н-оксидом пиридина [67]. [c.324]

    Какие соединения могут образоваться при следующих реакциях а) мононитрование а-бромнаф-талина и р-бромнафталина б) моносульфирование а-нитронафталина и р-нитронафталина Сравните правила ориентации при электрофильном замещении в бензоле и нафталине. [c.40]

    Правила ориентации и представления о механизме для других типов ароматического замещения были рассмотрены в гл. 1 Алканы , разд. Г.1, и гл. 7 Галогенпроизводные , разд. Г.1 и Г.5, поэтому обсуждение в данной главе ограничивается рассмотрением нитрования. Нитрование алкилбензолов дает главным образом о- и п-нит-роалкилбензолы. Количество -нитротолуола составляет около 2%, но может быть увеличено до 4,3% при 60 °С. Вторая Нитрогруппа направляется в Jtie/ 1a-пoлoжeниe по отношению к первой, если это положение не занято, но известны и исключения [28] [c.481]

    Полученные данные показьшают, что в присутствии бензолсульфо-кислоты нарушается обычный ход электрофильного замещения ароматического ядра. При алкилировании н-олефинами катализатор бензолсульфокислота способствует образованию, в основном, орто-замещенных алкилфенолов (2- и 2,6-структур). Это означает, что обьганые правила ориентации в реакции алкилирования фенола сохраняются до тех пор, пока процесс протекает при кинетически контролируемых условиях (при низкой температуре и с малыми количествами катализатора). При термодинамически контролируемых условиях реакции, т. е. при высоких температурах, продолжительном времени реакции и больших количествах сильнодействующих катализаторов, имеет место деалки-лирование и переалкилирование, способные привести к необычным продуктам реакции. [c.40]


    С-Н-связи ароматического кольца могут быть "защищены" разумным использованием правил ориентации при электрофильном замещении. Наиболее удачной следует признать защиту с помощью активирующих групп, так как оти последние увеличивают скорость реакции. Защита может осуществляться двумя способами I) стери-ческим зкранированием активного орто-полояения, как в случае синтеза 1,2,3-триметилОензола [c.82]

    Н3РО4 моноалкилбензолы получаются с хорошим выходом даже при молярном отношении бензола к олефину, равном 1 — 1,5 1, температуре 80—100° и атмосферном давлении. Продукты вторичного алкилирования получаются с выходом, не нревышаюш,им 10—20%, хотя на практике для обеспечения максимальных выходов моноалкилзаме-щенных берут 3 — 5-кратный избыток ароматического углеводорода. Диалкилбеизолы являются в основном параизомерами, содержаш,ими небольшие количества орто-замещенных, при отсутствии метаизомеров. Таким образом, можно сказать, что фтористый бор и его молекулярные соединения представляют собой единственные катализаторы, в ирисутствии которых выполняется правило ориентации в реакции алкилирования ароматических углеводородов олефинами. Причем вследствие большой чувствительности к пространственным затруднениям в орто- [c.359]

    Теоретическое, квантово-механическое обсуждение правил ориентации при замещении свободными радикалами в ароматических кольцах — см. Wheland, J. А. С. S., 64, 900, 1942 [c.167]

    Повышение или понижение реакционной способности ароматических соединений (влияние на легкость замещения), вызванное уже имеющимся в ядре заместителем, ничего не говорит о его влиянии на направление замещения. Объяснение правил ориентации, которое дается во многих учебниках, исходя из мезомерных предельных состояний монозамещенных ароматических соединений, предполагает, что заместители не только влияют на общую основность ядра в основном состоянии, но и у каждого углеродного атома ядра создают различные плотности электронов. Как показывают измерения ядерного магнитного резонанса, различия в электронных плотностях у отдельных углеродных атомов основного состояния монозамещенного ароматического соединения не так велики, как это следовало бы ожидать на основании мезомерного эффекта заместителей. У хлор- и бромбензола, фенола и анизола, например, не наблюдается вообще никаких различий. Следовательно, плотность электронов в нормальном состоянии ароматического соединения не может одна определять ориентацию заместителя при вторичном электрофильном замещении. Разные направления вторичного замещения объясняются тем, что заместители влияют на величину энергии активации реакций, ведущих к орто-, мета- и лара-замещенным продуктам. Именно это и определяет скорости трех электрофильных конкурирующих реакций [см. уравнение Аррениуса (39), ч. П1]. Различие в энергиях активации для орто-, мета- и пара-заместителей основано на том, что разница энергий между основным и переходным состоянием Ai (см. рис. 91) у этих веществ существенно отличается. Так как энергия переходного состояния неизвестна, то вместо нее будет рассматриваться о-комплекс (В на рис. 91), который лежит вблизи переходного состояния. Неточность, связанная с этим упрощением, невелика. [c.282]


Смотреть страницы где упоминается термин Замещение правила ориентации: [c.353]    [c.245]    [c.286]    [c.317]    [c.394]    [c.87]    [c.341]    [c.155]    [c.168]    [c.435]   
Органическая химия Том1 (2004) -- [ c.435 , c.444 ]

Теоретические основы органической химии (1964) -- [ c.467 , c.469 ]




ПОИСК





Смотрите так же термины и статьи:

Ориентация при замещении в беи

Ориентация, правила



© 2025 chem21.info Реклама на сайте