Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Отклонения от закона Рауля

    Положительные и отрицательные отклонения реальных растворов от закона Рауля обусловлены разными факторами. Если разнородные молекулы в растворе взаимно притягиваются с меньшей силой, чем однородные, то это облегчит переход молекул из жидкой фазы в газовую (по сравнению с чистыми жидкостями) и будут наблюдаться положительные отклонения от закона Рауля. Усиление взаимного притяжения разнородных молекул в растворе (сольватация, образование водородной связи, образование химического соединения) затрудняет переход молекул в газовую фазу и поэтому будут наблюдаться отрицательные отклонения от закона Рауля. [c.192]


    Примерами растворов с положительными отклонениями от законов Рауля могут служить растворы  [c.191]

    На рис. 1.19 представлены кривые зависимости фугитивности от концентрации для бинарного раствора, проявляющего заметные отрицательные отклонения от закона Рауля. [c.43]

    Обычно при повышении температуры (пока давление насыщенного пара относительно невелико) отклонения от закона Рауля в форме (VI, 4) уменьшаются. Но при достаточно высоких температурах, когда давление насыщенного пара раствора очень велико, уравнение (VI, 4) становится неточным, так как [возрастают отклонения пара от закона идеальных газов. В этих условиях термодинамические свойства газов целесообразно связывать не с давлением, а с летучестями /,-, и соответственно, закон Рауля выражать в форме уравнения [c.187]

    Очевидно, для растворов, проявляющих положительные отклонения от закона Рауля (см. рис. 1.6), уравнение (1.70), определяющее коэффициент активности, сохраняет тот же общий вид, но сравнение величин с единицей дает картину, обратную рассмотренной выше. Таким образом, численное значение коэффициента активности определяется выбором стандартного состояния.  [c.44]

    Реальные растворы. Отклонения от закона Рауля [c.191]

    Отсюда следует, что отношение коэффициентов активности может, таким образом, служить мерой неидеальности раствора. Поскольку отклонения от закона Рауля в разбавленных растворах редко искажают результаты больше чем в 2 раза, неидеальность раствора не будет вносить сколько-нибудь серьезных изменений в величину по сравнению с уже рассмотренной для идеальных систем. [c.434]

    Исключения будут только для случаев заметного взаимодействия между частицами растворенного вещества или между растворителем и частицами одного или большего числа растворенных веществ. В обоих этих случаях, однако, на наличие взаимодействия будут указывать как выделение энергии, так и очень сильное отрицательное отклонение от закона Рауля для растворенного вещества энергия его испарения будет больше. Соответственно с этим будет наблюдаться компенсирующее падение эффективного свободного объема растворенного вещества. Так как энергетический член находится в экспоненте, он будет оказывать преобладающее влияние. В результате равновесие окажется сдвинутым в сторону образования более сильно сольватированных частиц. [c.435]

    Установлено, что отклонения от закона Рауля во всех системах, образованных углеводородами с одинаковым числом углеродных атомов Пс, являются положительными, причем зависимость коэффициентов активности компонентов и 72 от состава, как правило, имеет характер близкий к симметричному. Отклонения от закона Рауля тем больше, чем больше компоненты различаются по числу л-связей Пц, а-ацетиленовых атомов водорода пн и циклов Пц в молекуле. Определенное влияние, хотя и меньшее, чем указанные факторы, оказывает различие в пространственной структуре молекул. Для корреляции и предсказания фазового равновесия в углеводородных смесях предлагается использовать [c.665]


    Если в воде растворены неорганические соли, например сильные электролиты, дающие отрицательные отклонения от законов Рауля, взаимодействие ионов с молекулами воды больше, чем взаимодействие между самими молекулами воды, поэтому ионы преимущественно распределяются в объеме водного раствора. В [c.472]

    К растворам с отрицательными отклонениями от законов Рауля относятся, например, растворы  [c.192]

    Как расчет термодинамических величин, отнесенных к молю раствора или компонента, так и развитие статистической теории требуют знания состава раствора, выраженного через мольные (л ,) или мольно-объемные (ср,) доли компонентов. Для расчета этих величин необходимо знать молекулярные веса компонентов, особенно полимера. Эта задача не проста. Для определения молекулярного веса Ма необходимо, как мы знаем, измерить кол-лигативное свойство предельно разбавленного раствора. Вследствие того что в растворах высокомолекулярных веществ имеют место большие отрицательные отклонения от закона Рауля, свойства предельно разбавленных растворов проявляются лишь при малых концентрациях растворенного вещества. Прн этих условиях такие коллигативные свойства, как понижение давления пара или понижение точки затвердевания, используемые для определения молекулярного веса, становятся настолько малыми, что их крайне трудно измерить. Только осмотическое давление таких растворов имеет достаточно точно измеримую величину (например, осмотическое давление 5%-ного раствора каучука в бензоле ( 2=4-19 ) равно 10 мм рт. ст.]. В связи с этим измерение осмотического давления растворов полимеров получило широкое распространение как метод определения молекулярного веса высокомолекулярных веществ в растворе. Точное измерение малых осмотических давлений проводится с помощью специальных, тщательно разработанных методик. [c.258]

    В первом случае теплота смешения чистых компонентов будет положительной. Во втором случае, при особых взаимодействиях разнородных молекул, указанных выше, теплота смешения компонентов будет отрицательной. Таким образом, знак отклонения от закона Рауля и знак теплоты смешения должны в общем случае совпадать. Такое совпадение, как правило, наблюдается. [c.193]

    Изменение знака отклонения от закона Рауля—Генри наблюдается, например, в растворе пиридин—аода при 79 °С (рис. VI, 6). В интервале концентраций пиридина (1—л )=0- -0,59 наблюдаются положительные, а при больших концентрациях—отрицательные отклонения от закона Рауля. Очевидно, при концентрации пиридина (1—х)=0,59 парциальное давление пиридина имеет значение, соответствующее идеальному раствору. По-видимому, значение парциального давления воды при х=0,96 также соответствует идеальному раствору. [c.193]

    Из сказанного, между прочим, вытекает, что отсутствие отклонения от закона Рауля или равенство нулю теплоты, смеше- [c.193]

    Эти растворы обнаруживают положительное отклонение от закона Рауля. Давление пара чистого брома Р2=0.280 атм при 25°С, [c.213]

    Высаливающее влияние отдельных ионов растет с их зарядом и уменьшается с увеличением радиуса. Оно объясняется в основном тем, что ионы притягивают молекулы воды и не притягивают неполярные и слабо поляризуемые молекулы малорастворимых газов, в результате чего проявляется эффект высаливания молекул газа из раствора, увеличивается летучесть растворенного газа, т. е. растет положительное отклонение от закона Рауля и падает растворимость. [c.228]

    Легко видеть, что, как и для газов, положительные отклонения от закона Рауля—Генри вызывают уменьшение растворимости твердого вещества, а отрицательные отклонения—увеличение ее. Общие же закономерности ограничиваются качественными обобщениями, охватывающими лишь отдельные классы растворов. [c.232]

    Лишь для неполярных веществ (главным образом—органических), растворы которых обнаруживают небольшие положительные отклонения от закона Рауля—Генри, удается построить полуколичественную статистическую теорию растворимости, согласно которой основным фактором, определяющим растворимость твердого тела в различных жидких растворителях, является разность квадратных корней внутренних давлений жидких компонентов. С ростом этой разности растворимость уменьшается (см. стр. 252). [c.232]

    Количественные закономерности, учитывающие отклонения свойств реальных растворов от свойств идеальных растворов, могут быть пока найдены лишь для отдельных классов растворов. Например, такие закономерности удалось установить для растворов неполярных неассоциированных жидкостей, для которых характерны небольшие отклонения от закона Рауля, а также для растворов, теплота образования которых нз компонентов равна нулю, и некоторых других растворов. [c.248]

    Как показывает молекулярно-статистический анализ, закон Рауля может соблюдаться при любых концентра- сг> циях и при условии равенства нулю теплоты смешения жидких компонентов только в тех случаях, когда мольные объемы компонентов близки между собой. Увеличение различия между мольными объемами приводит к отрицательным отклонениям от закона Рауля, т, е, к положительным избыточным энтропиям смешения [см. уравнения (VH, 55) и (УП, 56)], [c.253]


    При растворении в воде органических веществ, молекулы которых имеют неполярную часть—углеводородный радикал и полярную часть—группу ОН (спирты), СООН (кислоты), NHj (амн-ны) и т. п. (т. е. веществ, дающих водные растворы с положительными отклонениями от закона Рауля), взаимодействие между молекулами воды в объеме раствора больше взаимодействий между молекулами воды и молекулами (в целом) этих веществ, поэтому эти вещества будут преимущественно выталкиваться из объема раствора на поверхность, т. е. их адсорбция Г2>0. Вследствие накопления на поверхности этих веществ, молекулярное взаимодействие в поверхностном слое уменьшается и поверхностное натяжение о с ростом концентрации падает. [c.471]

    Б зависимости от природы растворяющегося пара и растворителя могут быть растворы как с положительными, так и с отрицательными отклонениями от закона Рауля (см. стр. 191). Уравнение этих кривых имеет вид  [c.592]

    Положительные отклонения от закона Рауля. Растворы ацетон — сероуглерод, этиловый спирт — этиловый эфир и другие имеют характерные отклонения от закона Рауля в сторону повышения давления пара (рис. 91). [c.197]

    Регулярные и атермальные растворы в основном образуются неполярными растворителями. У регулярных растворов положительные отклонения от закона Рауля, а у атермальных — отрицательные. Полярные растворители, и в первую очередь растворители, склонные к ассоциации, имеют более существенные отклонения от прямолинейной зависимости, изменения давления паров и даже приближенно не подчиняются закону Рауля. [c.215]

    Отрицательные отклонения от закона Рауля. Для растворов характерно уменьшение давления пара по сравнению с идеальными растворами (рис. 92) Отрицательные отклонения обусловливаются большими силами притяжения между молекулами разных типов (взаимодействие А — В больше, чем А — А и В — В). Отрицательные отклонения наблюдаются у растворов, склонных к сольватации, гидратации и т. п. (например, вода и хлористый водород, вода и серная кислота и т. п.). Образование раствора такого типа, как правило, сопровождается уменьшением объема и выделением [c.197]

    Хотя положительные и отрицательные отклонения от закона Рауля имеют большое значение для реальных растворов, подобно тому как отклонения от закона состояния идеального газа играют важную роль для реальных газов, мы будем заниматься главным образом свойствами идеальных растворов и ситуациями, в которых закон Рауля вьшолняется хотя бы приблизительно. [c.138]

    Не дала положительных результатов и теория Пойнтинга, который пытался объяснить отклонение от закона Рауля образованием в системе прочных сольватов. [c.84]

    Отклонения от закона Рауля могут быть либо весьма существенными либо сравнительно небольшими. Дж. Гильдебранд вы- [c.214]

    На фиг. 8 представлены кривые парциальных давлений одного из компонентов бинарного неидеального раствора в функции мольного состава жидкой фазы для различных положительных отклонений от закона Рауля. При некоторых определенных значениях величин отклонений от свойств идеального раствора и, в частности, для систем, компоненты которых имеют близкие температуры кипения, кривая общего давления паров системы может иметь экстремальную точку. В этом случае раствор, состав которого отвечает максимуму или минимуму суммарной упругости паров, называется азеотропи-ческим раствором и характеризуется тем, что жидкость кипит при постоянной температуре и находится в равновесии с паром одного и того же с нею состава [7]. [c.17]

    Оценку эффективности различных растворителей для экстракционной перегонки можно произвести различнымт способами. Предварительный отбор может быть выполнен путем измерения температур кипения смесей углеводородов и растворителя. Хороший растворитель должен обладать значительно более низкой экспериментально измеренной температурой кипения смеси, чем температура, рассчитанная на основе линейной зависимости между составом и температурой кипения. Это иллюстрируется графиком (рис. 5), выражающим зависимость температуры кипения смеси метил-циклогексана с анилином от состава [11]. Экспериментальная кривая, выражающая зависимость температуры кипения от состава смеси, расположена значительно ниже пунктирной линии, соответствующей линейной зависимости между температурой кипения и составом. Это показывает, что образуются неидеальные растворы, для которых отклонения от закона Рауля имеют положительное значение. Экспериментальные данные по равновесию пар—жидкость показали, что в качестве растворителей для [c.100]

    Абсорбционные масла, приготовляемые из парафинистых нефтей, имеют лучшие абсорбционные свойства, чем полученные из нефтей других типов. Из закона Рауля о понижении давления пара следует, что из двух абсорбентов лучшим будет тот, чей молекулярный вес меньше. Однако было найдено, что закон Рауля не всегда справедлив для реальных жидкостей [43]. Вилсон п Уайлд (Wilson and Wylde [44]) нашли (для четырех растворителей), что по мере уменьшения молекулярного веса увеличивались отклонения от закона Рауля. Наблюдаемые отклонения были достаточно велики, чтобы частично компенсировать влияние изменения молекулярного веса. Эти авторы использовали фракции смазочных масел нефтей из Калифорнии, Мексиканского залива, Пенсильвании и касторовое масло (молекулярный вес в этом ряду растет). Значительное влияние оказывает также давление. Теория соблюдается до давлений 7 ат, при давлениях 35—55 ат отклонения достигают 70 % н становятся равными 100 % при 105 ат [45]. [c.470]

    Отклонения от закона Рауля в первом случае называются поло-зкательными (общее давление пара больше аддитивной величины), а во втором случ ь—отрицательными (общее давление пара меньше аддитивной величины). [c.191]

    На рис. VII, 10 изображена зависимость активности бензола (вычисленной из давлений пара) от состава раствора силикона - H3[( H3)2SiO] Si( H3)3 в бензоле. Отрицательные отклонения от закона Рауля увеличиваются с ростом степени полимеризации силикона в растворе. [c.255]

    Уравнение (121) показывает, что удельный удерживаемый объем уменьшается с ростом молекулярного веса неподвижной жидкости М и с ростом давления пара Рд чистого жидкого компонента. При данном Ро (т. е. для данного компонента) и при данной температуре Т колонки для увеличения удерживаемого объема надо выбрать растворитель, в котором данный компонент растворяется, давая большие отрицательные отклонения от закона Рауля (т. е. 7о<1)> и, наоборот, для уменьшения значения (газ-жидкость) при ТОМ жб Ро И при ТОЙ жс темперзтуре надо выбрать растворитель, в котором данный компонент растворяется, давая большие положительные отклонения от закона Рауля. [c.594]

    Если отклонения от закона Рауля очень велики, кривая общего давления пара может иметь максимум или лп1нимум, в зависимости от того, какие отклонения наблюдаются — положительные или отрицательные. [c.198]

    Для растворов, которые точно подчиняются закону Рауля, кривые температура — состав могут быть построены по расчетным данным. Если же смесь дает отклонения от закона Рауля, то кривая может быть построена по опытным данным. Однако, если отклонения эти очень велики, то на кривых давление пара — состав (или температура кипения —состав) может появиться максимум или минимум в зависимости от того, положителынз1е или отри-[[ательные отклонения проявляют эти растворы. В точках максимума или минимума кривая жидкости обязательно коснется кривой пара. Такая точка, в которой состав пара и состав жидкости одинаковы, называется азеотропной точкой. Смесь кипит как одно целое, и разделить смесь иа составные части путем перегонки оказывается невозможным. [c.200]


Смотреть страницы где упоминается термин Отклонения от закона Рауля: [c.43]    [c.434]    [c.191]    [c.193]    [c.200]    [c.201]    [c.205]    [c.224]    [c.250]    [c.253]    [c.197]    [c.198]    [c.198]   
Физическая химия (1980) -- [ c.83 ]




ПОИСК





Смотрите так же термины и статьи:

Водные растворы электролитов Отклонение растворов электролитов от законов Вант-Гоффа и Рауля

Идеальные растворы отклонения от закона Рауля

Оглавление Закон Рауля и отклонения от него

Отклонение свойств разбавленных растворов солей, кислот и оснований от законов Рауля и Вант-Гоффа

Отклонения

Отклонения от закона Рауля в разбавленных растворах

Положительные и отрицательные отклонения от закона Рауля

Растворы с положительными и отрицательными отклонениями от закона Рауля

Рауль

Рауля закон

Рауля закон отклонение отрицательно

Рауля закон отрицательные отклонения

Рауля закон положительные отклонения

Рауля отклонения

Реальные растворы. Положительные и отрицательные отклонения от закона Рауля



© 2025 chem21.info Реклама на сайте