Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Торий хлорид

    Самый тяжелый из аналогов титана — торий — образует галогениды с максимальным по сравнению с легкими аналогами вкладом ионного взаимодействия разница в величинах электроотрицательности катиона и аниона для соответствующих галогенидов здесь выше, чем у тетрагалогенидов легких аналогов элементов подгруппы титана. Однако хлорид, бромид и йодид Th(IV), так же как галогениды четырехвалентных Ti, Zr, Hf, все же способны сублимироваться (т. е. переходить в молекулярную форму), но при более высокой температуре даже при сублимации в вакууме необходимо нагревание до 500—600° С. [c.102]


    Наиболее важными соединениями актиноидов являются оксид и гидроксид тория (IV) — ТЬОг и ТЬ(0Н)4, обладающие основными свойствами фториды и хлориды урана (в том числе комплексные), а также оксиды урана и02, (и2 и )08 и иОз. Катионы урана (III) и (IV) легко окисляются, при этом они переходят в устойчивый ион [и (Н20)б0г] (упрощенная формула иОг +, уранил-катион). Известно очень много солей уранила, как индивидуальных, например иОг(МОз)2 — нитрат уранила, так и двойных, например К(и02)Р04 — ортофосфат ура- [c.232]

    Коэффициент распределения циркония возрастал до 260 с ростом концентрации соляной кислоты и повыщением активности хлорид-иона. Показана возможность разделения циркония, тория и урана, располагающихся по степени извлечения в органическую фазу в ряд и > 2г > ТЬ. [c.343]

    Для определения очень малых количеств тория окрашенное соединение тория с арсеназо HI экстрагируют изоамиловым спиртом в присутствии хлорида дифенилгуанидиния и монохлоруксусной кислоты. Метод сочетает собственно определение тория с его экстракционным концентрированием и дает возможность определять торий при разбавлении 1 5 - 10 (0,02 мкг ТЬ/л л). [c.378]

    Калибровочный график. Для построения калибровочного графика в делительные воронки емкостью 25—30 мл вводят 1—5 мл стандартного раствора Т1т(МОз)4 с содержанием Th 1 мкг/мл, по 1 мл 0,025%-ного раствора арсеназо П1, 4,0 мл 0,1 н, раствора азотной кислоты, по 1 г монохлоруксусной кислоты, по 10 мл 20%-ного р створа хлорида дифенилгуанидиния и по 10 мл изоамилового спирта. Смесь встряхивают 2 мин, дают разделиться фазам, органический слой фильтруют через бумажный фильтр в сухую кювету и измеряют оптическую плотность по отношению к раствору сравнения, полученному аналогично и не содержащему торий. [c.378]

    Написать химические формулы солей стеарат кальция метаалюминат натрия пирофосфат церия (III) метафосфат тория (IV) молибдат самария (III) сульфат индия (III) сульфид индия (II) нитрат рутения (III) хлорид тулия (III). [c.99]

    К. Фаянс связал окраску неорганических соединений с деформацией электронных оболочек их анионов. Чем сильнее деформация, тем интенсивнее и глубже окрашено соединение. Например, деформация увеличивается в ряду ионов фторид — хлорид — бромид — иодид. Поэтому фториды почти всегда бесцветны, хлориды окрашены слабее, чем бромиды, а бромиды слабее, чем иодиды. Сульфиды окрашены интенсивнее окислов, а окислы сильнее, чем гидроокиси. К. Фаянс указал, что окраска связана также с деформирующей силой катиона. Твердые галогениды двух- и трехвалентных металлов (хлорид кальция, хлорид алюминия) бесцветные, галогениды четырехвалентных металлов (хлорид титана) окрашены, если катион малого размера, и бесцветны (хлорид тория), если катион большого размера. Радиус иона Ti + [c.32]


    Тетрахлорид курчатовия КиС также оказался летучим в отличие от хлоридов актиноидов и лантаноидов (например, тория и церия). Это обстоятельство подтверждает принадлежность курчатовия к группе титана [c.83]

    Для работы требу тся Приборы (см. рис. 73 и 74). — Штатив с пробирка ми. — Тигельные щипцы. — Крышка от фарфорового тигля. — Кристаллиза тор большой. — Стаканы емк. 100 или 150 и ЙО мл. — Цилиндр мерный емк 50 мл. — Цилиндр со стеклом. — Колбы емк. 100 мл. 4 шт. — Колба мерная емк 100 мл. — Колбы конические емк. 100 мл, 3 шт. — Пипетка емк. 10 мл. — Шпа тель стеклянный. — Газоотводная трубка с пробкой для собирания газов над водой. — Ванна стеклянная. — Бумага (листы 7X7 см). — Лучины. — Вата. — Хлорид аммония. — Гидроокись кальция. — Цинк гранулированный. — Фосфор красный. — Соляная кислота концентрированная. — Азотная кислота концентрированная. — Серная кислота (1 5). — Хлорид аммония, насыщенный раствор. — Нитрит натрия, насыщенный раствор. — Соляная кислота, 0,4 н. титрованный раствор. — Едкое кали, 2 н. раствор. — Аммиак, 25%-ный и 2 н. растворы. — Арсенат натрия, 0,5 н. раствор. — Сульфат цинка, 0,5 н. раствор. — Сульфат никеля, 0,5 н. раствор. — Нитрат серебра, 1%-ный раствор. — Сульфат гидразина, 3%-ный раствор. — Хлорид гидроксиламина, 3%-ный раствор. — Жидкость Фелинга, растворы I и И (см. раб. 21, стр. 194). — Растворы метилового оранжевого и фенолфталеина. [c.254]

    Ки= 2,34-2,54 2а = 10,62—5,08 2х Так как с ростом температуры экстракция солей металлов (кроме циркония и гафния) уменьшается, были рассчитаны термодинамические функции (ДН, Д2, Д5) для реакций экстракций уранилнитрата, нитрата тория, хлорида теллура, рениевой кислоты и др. При экстрак[ши солен металлов по сольватному меха- [c.43]

    НИИ и температуре свыше 300° С. Обычно применяются температуры порядка 450—550° С. В качестве катализаторов используются металлы и окиси металлов IV, V и VI групп периодической таблицы, чаще всего базирующиеся на алюминии. Наиболее эффективны окиси хрома и ванадия, окись церия несколько уступает им, а окись тория хотя и проводит дегидрирование, но ароматизирует уже слабо [278, 283]. Были опробованы также никель на алюминии [275], нлатинизированный углерод [284, 285], окиси цинка, титана и молибдена, сульфид молибдена, активированный древесный уголь [279] и хлорид алюминия (металлический алюминий плюс хлористый водород) [286]. [c.103]

    Солн серебра, особенно хлорид и бромид, ванду их способности разлагаться под влиянием света с выделением металлического серебра, широко используются для изготовления фотоматериалов — пленки, бумаги, пластинок. Фотоматериалы обычно представляют собою светочувствительную суспеЕ1зию AgBr в желатине, слой кО торой нанесен на целлулоид, бумагу илн стекло. [c.579]

    Катионы 3-й аналитической группы осаждаются в щелочной среде сульфидом аммония при pH 9 в присутствии буферного раствора — смеси гидроокиси и хлорида аммония. 3-ю группу делят на две подгруппы 1) подгруппу катионов, образующих гидроокиси, и 2) подгруппу катионов, образующих сульфиды. Гидроокиси металлов получаются из сульфидов в том случае, когда растворимость гидроокиси меньше, чем растворимость сульфида данного металла. В подгруппе катионов, образующих гидроокиси, ясно заметно влияние диагонального направления в системе Менделеева. По диагоналям расположены элементы, выделяющиеся в этих условиях в виде гидроокисей а) бериллия, алюминия, титана, ниобия б) скандия, циркония, тантала, урана (VI) в) иттрия, гафния, лантана, тория вследствие сходства в свойствах с лантаном и актинием вместе с гидроокисями указанных металлов выпадают также все лантаноиды и актиноиды. Может выпасть и гидроокись магния в отсутствие иона ЫН . Выпадение в этой же подгруппе гидроокиси хрома, Сг(ОН)з, объясняется существованием электронной конфигурации. .. ёЧзК По этой же причине медь с электронной конфигурацией. .. За 1"451 попадает не в 3-ю, а в 4-ю аналитическую группу, образуя сульфид Сы5, не растворимый в кислой среде. Появление внешнего подуровня наблюдается через четыре элемента калий 5, кальций скандий s титан s ванадий хром 5 марганец s железо s кобальт 5% никель 5% медь цинк 5 Поведение ионов ванадия и марганца отличается от поведения хрома, поведение никеля и цинка — от поведения меди. [c.28]

    Хлорид палладия, осажденный на силикагеле из раствора олефина, активнее гомогенного катализатора, однако при осаждении Pd U из солянокислого раствора получен неактивный катализа тор. Как показали опыты с системой III, при ее вторичном использовании в ходе изомеризации появляется индукционный период. [c.139]

    Сульфоксиды являются эффективными экстрагентами уранил-нитрата, нитратов тория, циркония, хлорида теллура [131]. Индивидуальные диалкил- и циклоалкилсульфоксиды по экстракционной способности превосходили трибутилфосфат и другие фосфор- [c.343]

    В некоторых случаях электролиты вызывают изменение концентрации водородных ионов раствора, как например хлористый аммоний. В других случаях электролиты влияют на растворимость вследствие образования комплексных групп с одним из ионов . Собственно же влияние ионной силы не так велико. Так, даже для четырехзарядного иона (азотнокислый торий) экспериментальное значение коэффициента активности рчвно 0,189 при концентрации 0,5 Л1 . Экспериментально определенные значения для 1— 1-и 2—1-зарядных электролитов (хлориды натрия, кальция, магния и др.) равны 0,3—0,6 при увеличении концентрации выше 0,5—1,5 М коэффициент активности снова увгличивается, и, таким образом, значение активности приближается к значению концентрации. [c.53]


    Проведение опыта Б. Разбавляют в пять раз ко тор-СК1ИЙ силикатный клей ли приготовляют 50%-ный раствор силиката натрия. Приготовленный раствор наливают в сосуд с плоскопараллельными стенками емкостью 2 л и бросают в него крупные кристаллы следующих солей хлорида железа, хлорида марганца, хлорида магния, сульфата меди, а также сульфата никеля. [c.54]

    Аналогично получают металлический торий. При восстановлении ThFi кальцием металл выделяется в виде губчатой массы. Проводит также электролиз расплавов, содержащих ThF4 или KlThFj) и хлориды щелочных металлов. Процесс ведут при 750-800 С. Глубокую очистку тория осуществляют иодидным методом (см. разд. 8.2). [c.574]

    Хлорид алюминия AI I3 обычно получают непосредственным взаимодействием хлора с алюминием. Он находит применение в качестве катализа- -тора в органическом синтезе. [c.282]

    Переработка торийсодержащих руд сводится к выделению ТЬОг с последующим кальцийтермическим восстановлением или к электролизу растворов ТЬр4 или в расплавах хлоридов щелочных металлов. Торий выделяется на катоде в виде порошка. Компактный металл получают переплавкой в вакууме или в инертной атмосфере. Для получения тория высокой чистоты используют термическое разложение ТЫ4 на раскаленной нити. [c.435]

    Для очистки от циркония рекомендуется экстрагировать ТБФ из 3—4 н. солянокислого раствора, насыщенного NH4 I. Скандий при этом остается в водной фазе [40]. Для отделения от тория проводят экстракцию ТБФ из 2 н. HNO3 экстрагируется только торий. Чтобы повысить степень извлечения тория в органическую фазу, в качестве высаливателя вводят нитрат аммония [41]. При использовании ТБФ и ДААФ для экстракционного извлечения скандия из бедных растворов рекомендуется вводить высаливатели (хлориды Са, Mg, Li). [c.29]

    Перерабатывать гидроокиси можно несколькими способами (рис. 25). По одному из вариантов, смесь гидроокисей обрабатывают при 70—80° соляной кислотой до pH 3,5—4, чтобы перевести в раствор РЗЭ. Нерастворившуюся гидроокись тория отфильтровывают на фильтр-прессах. В фильтрате содержатся РЗЭ (практически без тория), которые можно в дальнейшем выделить либо в виде смеси хлоридов, упаривая раствор, либо осадить в виде гидроокисей или карбонатов [35]. По другому варианту, осуществляемому на одном из заводов США, осадок гидроокисей растворяют в небольшом избытке (25%) концентрированной соляной кислоты. Доводят pH раствора до 5,8, в результате 99,7% ТЬ выпадает в виде гидроокиси ТЬ(0Н)4 гидроокиси РЗЭ при таком pH не выпадают. С торием соосаждаются уран (99,3%), железо, титан, остатки фосфора и 3% РЗЭ. Осадок растворяют в НЫОз. С помощью ТБФ экстрагируют уран и торий РЗЭ извлекают из рафината [35]. РЗЭ выделяют из раствора дальнейшей нейтрализацией. Получается концентрат, содержащий 73% ЬпзОз и 0,05% ТЬО . [c.101]


Смотреть страницы где упоминается термин Торий хлорид: [c.137]    [c.51]    [c.403]    [c.403]    [c.115]    [c.137]    [c.403]    [c.722]    [c.84]    [c.12]    [c.117]    [c.233]    [c.233]    [c.199]    [c.58]    [c.440]    [c.249]    [c.14]    [c.49]    [c.361]    [c.362]    [c.379]    [c.47]    [c.184]    [c.57]    [c.435]    [c.441]   
Катализ в неорганической и органической химии книга вторая (1949) -- [ c.0 ]

Вредные химические вещества Неорганические соединения элементов 1-4 групп (1988) -- [ c.263 , c.264 , c.484 ]

Руководство по неорганическому синтезу (1953) -- [ c.186 ]




ПОИСК







© 2025 chem21.info Реклама на сайте