Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сольватация физическая

    Отклонения реальных растворов от свойств идеального раствора являются следствием таких химических явлений, как сольватация, ассоциация и диссоциация компонентов, а также следствием чисто физических факторов таких, как влияние различных молекулярных объемов и силового поля молекул. [c.11]

    В растворах и полярных жидкостях эффект сольватации нарушает стабильность образовавшихся ионов и вероятность превращения их в радикалы. Таким образом, причину существенного различия между радиационно-химической активностью данного вещества в жидком н газообразном состояниях следует искать не в различии первичных физических процессов, а в изменении вероятности тех вторичных процессов, которые протекают вслед за первичными актами возбуждения и ионизации. [c.265]


    В 1914 г. Л. В. Писаржевским было дано новое толкование электродных процессов, позволившее заменить формальную схему осмотической теории Нернста реальной физической картиной. Несколько позже (1926 г.) аналогичные идеи высказаны Н. А. Изгарышевым и А. И. Бродским. По Л. В. Писаржевскому, причинами перехода ионов металла в раствор являются диссоциация атомов металла иа ионы и электроны и стремление образовавшихся ионов сольватиро-ваться, т. е. вступать в соединение с растворителем. Необходимо, следовательно, учитывать два равновесия одно — между атомами металла и продуктами его распада (ионы и электроны) и другое — при сольватации (в водных растворах — гидратации). Таким образом, потенциал металла, погруженного в раствор, зависит от обоих процессов и состоит из двух слагаемых, одно из которых зависит от свойств металла, а второе — от свойств как металла, так и растворителя. Эти новые взгляды, основанные на электронных представлениях, качественно совпадают с современными представлениями, которые, таким образом, были предвосхищены Л. В. Писаржевским задолго до квантовой механики, статистики Ферми и других современных теоретических методов, [c.216]

    Понятие физическая контракция охватывает круг явлений,связанных с межмолекулярным взаимодействием в жидкой фазе и иа поверхности раздела фаз. Контракцией сопровождаются адсорбция, сольватация и некоторые другие процессы. [c.131]

    Раствор называют идеальным, если при любом соотношении компонентов образование его не сопровождается сжатием или расширением, а также выделением или поглощением теплоты. Строго говоря, ни один реальный раствор не обладает упомянутыми свойствами из-за ассоциации, диссоциации, сольватации и т. д. Однако растворы, образованные веществами, сходными по химическому составу и физическим свойствам (например, оптически активные изомеры), а также бесконечно разбавленные растворы по своему поведению близки к идеальным. [c.75]

    Наиболее простым закономерностям подчиняются идеальные растворы, образуемые веществами, сходными по химическому составу и физическим свойствам. Отклонения от идеальности вызываются химическими (ассоциация, диссоциация, сольватация и т. п.) и физическими (влияние различия молекулярных объемов и сил взаимодействия молекул) эффектами, Отклонения от идеальности, обусловленные различием химических свойств, как правило, уменьшаются с ростом температуры, а отклонения, вызванные неодинаковыми молекулярными размерами, возрастают. Введенное понятие идеальных растворов имеет не только теоретическое, но и практическое значение. Свойствами идеального раствора ие обладает ни один реальный раствор, за исключением растворов оптически активных и.зомеров и смесей, состоящих из компонентов, различающихся по изотопному составу, однако очень многие растворы практически ведут себя, как идеальные растворы. [c.180]


    Наличие у коллоидных частиц двойного электрического слоя далеко не всегда является причиной устойчивости органозолей. Устойчивость органозолей может обусловливаться и сольватацией частиц в результате физического или химического взаимодействия среды с дисперсной фазой. [c.306]

    Процесс растворения в огромном большинстве случаев представляет собой сочетание двух процессов — физического и химического, так как частицы растворяемого вещества равномерно распределяются среди частиц растворителя и в то же время вступают во взаимодействие с частицами растворителя (процесс сольватации). Поэтому при смешении жидкостей, при растворении в жидкостях твердых тел и газов происходит поглощение или выделение теплоты, которое нередко достигает значительной величины. [c.57]

    В настоящее время нельзя говорить о резком разграничении физических и химических сил. Поэтому в случаях промежуточных (например, при сольватации) или же в тех случаях, когда процесс хемосорбции сопровождается физической адсорбцией (например, О2 на угле), также применяют общий термин — сорбция. [c.106]

    В первом разделе книги излагаются методы изучения и современные представления о строении границ раздела металлических или полупроводниковых электродов с ионными системами (растворами, расплавами), а также границы раствор — воздух. Значительное внимание уделено термодинамике поверхностных явлений на электродах, адсорбирующих водород и кислород, и современной теории адсорбции органических соединений на электродах. Во втором разделе подробно анализируются закономерности стадии подвода реагирующих частиц к поверхности электрода, методы изучения этой стадии и приводятся примеры использования явлений массопереноса при конструировании хемотронных устройств и новых источников тока. Третий раздел посвящен изложению закономерностей стадии переноса заряженных частиц через границу электрод — раствор и физических основ элементарного акта электрохимических реакций. При этом рассматриваются такие важные в теоретическом отношении вопросы, как роль работы выхода электрона и энергии сольватации ионов в электродной кинетике. Теории двойного слоя, массопереноса и элементарного акта, по образному выражению А. Н. Фрумкина, — те три кита , на которых базируется мощное и стройное здание кинетики электродных процессов. [c.3]

    Ни физическая теория Вольта, ни химическая теория Нернста не могли дать непротиворечивого описания возникновения разности потенциалов на концах электрохимической цепи. В результате этого в электрохимии возникли две проблемы проблема Вольта и проблема абсолютного скачка потенциала. Прежде чем перейти к рассмотрению этих двух проблем, коротко остановимся на некоторых общих соотношениях и на методах определения вольта-потенциалов, а также работ выхода электронов ( ) и ионов ( Х< или из различных фаз. Работа выхода иона из раствора в воздух представляет собой реальную энергию сольватации. Она отличается от химического потенциала иона на работу преодоления поверхностного потенциала  [c.96]

    Излагая современное учение о кинетике электрохимических реакций, авторы более подробно останавливаются на закономерностях двух основных стадий электродных процессов стадии подвода реагирующих частиц к поверхности электрода и стадии разряда — ионизации, в которой происходит перенос заряженной частицы через границу электрод — раствор. В этом пособии достаточно полно представлены современные экспериментальные методы электрохимической кинетики, физические основы квантовомеханической теории электродных процессов, а также отражены такие вопросы, которые слабо освещены в литературе, например роль работы выхода электрона и энергии сольватации в электрохимической кинетике и др. [c.3]

    Величина а по своему физическому смыслу соответствует расстоянию, до которого могут сближаться электрические центры двух ионов. Однако сольватация ионов делает эту величину неопределенной (рис. 111.3). Поэтому значение а подбирают, исходя из наилучшего соответствия формулы (П1.55) экспериментальным данным. Для этого можно воспользоваться графической зависимостью lgi VJ от—Big/+ . Как следует из уравнения (111.55), тангенс угла наклона этой зависимости равен величине а. [c.47]

    Разделение коэффициентов активности может быть произведено только на основании теоретических соображений, а не на основании экспериментальных данных. Для разделения предложены те же пути, которые используются для разделения энергии сольватации солей на энергию сольватации отдельных ионов. Так, для солей, состоящих из катионов и анионов с подобными физическими свойствами (одинаковые валентные электронные оболочки и близкие радиусы), принимают, что активность катионов равна активности анионов. [c.58]


    Идеальные растворы образуются веществами, сходными по химическому составу и по физическим свойствам. Отклонения от идеальности являются следствием как химических эффектов (ассоциации, диссоциации, сольватации и т. д.), так и физич-еских (влияния различия мольных объемов и сил взаимодействия молекул). Первые, как правило, уменьшаются с ростом температуры, а отклонения, вызванные неодинаковыми молекулярными размерами, возрастают. [c.245]

    Растворами называются фазы, состав которых можно изменять непрерывно (в известных пределах), т. е. фазы переменного состава. Растворы —это однородные смеси молекул, а также атомов, ионов двух или более веществ, между которыми имеются физические и нередко химические взаимодействия. Ассоциация молекул какого-либо соединения и сольватация (соединение молекул растворенного вещества и молекул растворителя в непрочные комплексы), не образующие особенно больших молекул, не нарушают однородности раствора. С термодинамической точки зрения вещества, составляющие раствор, равноценны и деление на растворитель и растворенное вещество не носит принципиального характера. Растворителем обычно называют тот компонент раствора, количество которого больше (если растворитель, растворенные вещества и раствор находятся в одинаковых агрегатных состояниях). Если агрегатные состояния веществ до образования раствора различны, то растворителем считают то вещество, которое при данных условиях является жидкостью. Состав раствора или его концентрацию выражают различными способами молярная доля x — отношение числа молей -го вещества к общему числу молей всех компонентов в данном количестве раствора [c.170]

    Сольватация ионов в растворе определяется силами физической и химической природы, из которых основную роль играют силы межмолекулярного взаимодействия электростатического типа и донорно-акцепторное взаимодействие между ионом и молекулой растворителя. [c.219]

    Сольватация частиц в растворах накладывает отпечаток на все физические и химические процессы, которые в них протекают- [c.236]

    В равной степени сторонники физической концепции сольватации в некоторых случаях объясняют ее поведением растворителя в электростатическом поле растворенной частицы. В грубом приближении сольватационные процессы можно разделить на физи- [c.80]

    Для тех систем, в которых преобладает физическая составляющая взаимодействия, построение единой теории сольватации имеет большие перспективы. Если исключить химическое взаимодействие, то в общем случае степень воздействия растворенной частицы на растворитель зависит от величины ее заряда, электрического дипольного момента, массы, магнитного дипольного момента и т. п., а также от кинетических параметров — импульса, момента количества движения и др. [c.81]

    Растворением твердого тела в жидкости называют разрушение кристаллической структуры под действием растворителя с образованием раствора — гомогенной системы, состоящей из растворителя и перешедших в него молекул, ионов. Таким образом, растворение — это гетерогенная химическая реакция. Оно сопровождается сольватацией (если растворитель вода — гидратацией), т. е. образованием в растворе более или менее устойчивых соединений растворенных частиц с молекулами растворителя, часто переменного состава (см. разд. 4.3.1). Можно, однако, ввести следующ,ее разграничение. В случаях, которые мы будем называть физическим растворением, возможна обратная кристаллизация растворившегося вещества из раствора. Когда же растворитель или содержащийся в нем активный реагент так взаимодействуют с растворяемым веществом, что выделить растворившееся вещество из полученного раствора кристаллизацией невозможно, мы будем называть его химическим растворением. Такое деление условно, формально, но пользоваться им удобно. [c.213]

    Способность к набуханию — есть свойство полимера, определяемое его составом и строением, как и структурно-механические его свойства. Причиной набухания является не простое механическое вхождение НМС в пустоты или поры (которых в полимере, в сущности, нет), а межмолекулярное взаимодействие, обусловленное главным образом сольватацией макромолекул. Доказательство коллоидно-химической (а не физической) природы этого процесса — выделение теплоты набухания и уменьшение общего объема системы (контракция), связанное с ориентацией НМС. Поэтому процесс набухания всегда специфичен. [c.299]

    Природа растворителя является еще одним важнейшим внешним фактором, влияюш им на стабильность органических ионов. Многостороннее по своему характеру влияние растворителя в первом приближении можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т.е. жидкость с высокой диэлектрической проницаемостью, чисто физически снижает кулоновское взаимодействие зарядов, Этот эффект может быть довольно значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает силы кулоновского взаимодействия б 21 раз. С другой стороны, молекула растворителя может стабилизировать ионы любого заряда за счет заряд-дипольных взаимодействий, образования водородных связей, комплексов разного типа, короче, за счет эффектов, обобщенно обозначаемых термином сольватация. Эти эффекты сольватации приводят к значительному экранированию заряда иона молекулами растворителя и частичной делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.95]

    Как видим, в споре представителей химической теории растворов Менделеева и физической теории растворов, предложенной Аррениусом, Оствальдом и Вант-Гоффом, правы были обе стороны. Действительно, взаимодействие между компонентами раствора, сольватация, протекает всегда, однако не всегда это взаимодействие сопряжено с образованием стехиометри-ческих соединений. Но как бы то ни было, растворенные соединения всегда сольватирован ы и поэтому взаимодействие в растворе двух соединений А и В точнее следовало бы описать схемой  [c.27]

    В растворителях двух последних классов возможна как физическая, так и химическая сольватация. Физическая сольватация наблюдается главным образом для недиссоциированных молекул, а также для ионов, недостаточно склонных к образованию координационных связей (многие анионы, катионы большинства щелочных и щелочноземельных металлов — Ыа , К, Са , Ва , органические ионы). В первом случае сольватация обусловлена ван-дер-ваальсовыми и диполь-дипольными взаимодействиями, во втором — ион-дипольными. [c.98]

    Такнм образом, по Писаржевскому, переход ионов из металла в раствор совершается не за счет физически неясной электролитической упругости растворения металла, а в результате его взаимодействия с молекулами растворителя. Явление электролитической диссоциации электролитов и возникновение электродного потенциала основаны, следовательно, на одном и том же процессе сольватации (в случае водных растворов — гидратации) ионов. Из уравнения реакции (10.20) следует, что при растворении образуются не свободные, а сольватированные ионы, свойства которых зависят от и >ироды растворителя. Поэтому в отхичие от теории Нернста значение стандартного потенциала данного электрода должно меняться при переходе от одного растворителя к другому. Подобная зависимость была действительно обнаружена и послужила предметом исследований многих авторов (Изгарышева, Бродского, Плескова, Хартли, Измайлова и др.). Было установлено, что изменение электродного потенциала при переходе от одного растворителя к другому оказывается тем большим, чем М зньше радиус и выше заряд иона, участвующего в электродной реакции. По Плескову, меньше всего изменяются потенциалы цезиевого, рубидиевого и йодного электродов, в установлении равновегия на которых участвуют одновалентные ионы значительных размеров. Напротив, эти изменения особенно велики в случае ионов водорода и поливалентных катионов малых размеров. Именно такой зависимости электродных потенциалов от природы растворителя следовало ожидать на основе представлений Писаржевского о роли сольватационных явлений в образовании скачка потенциала металл — раствор. Для количественного сравнения потенциалов в разных растворителях применяют в качестве стандартного нулевого электрода цезиевый [c.221]

    Рассмотрим ограничения, накладываемые на выполнение формулы аддитивности, более подробно. Выполнение условия равновесия (4.5) на границе раздела фаз у большинства исследователей не вызьшает сомнения, поскольку процессы, протекающие на поверхности раздела фаз при физической абсорбции и экстракции — сольватация, десольватация, изомеризация и т. п., имеют скорости, значительно превышающие скорость массообмена. Однако в ряде работ по массообмену в аппаратах с плоской границей раздела фаз и с механическим перемешиванием в каждой из фаз авторы обнаружили отклонение от формулы аддитивности, обусловленное, как они предположили, поверхностным сопротивлением. В работе [221] приведен критический обзор основньгх исследований, в которых, по мнению авторов, было обнаружено поверхностное сопротивление в системах жидкость - жидкость. В этих работах частные коэффициенты массоотдачи определялись косвенным методом с погрешностью, большей чем отклонение от формулы аддитивности. Кроме того, в некоторых работах обнаружены методические ошибки. Для проверки формулы аддитивности требуются более точные методы определения частных коэффициентов массоотдачи (см. раздел 4.4). Поверхностное сопротивление массотеплообмена мало изучено. Одним из возможных механизмов является экранирование поверхности поверхностно-активными веществами (ПАВ) [222-224]. К обсуждению роли поверхностного сопротивления мы будем возвращаться в последующем изложении. [c.171]

    Электрохимия является разделом физической химии, в котором изучаются законы взаимодействия и взаимосвязи химических и электрических явлений. Основным предметом электрохимии являются процессы, протекающие на электродах при прохождении тока через растворы (так называемые электродные процессы). Можно выделить два основных раздела электрохимии термодинамику электродных процессов, охватывающую равновесные состояния систем электрод — раствор, и кинетику электродных процессов, изучающую законы протекания этих процессов во времени. Однако электрохимия изучает не только электродные процессы. В этот раздел физической химии нередко включанэт также теорию электролитов, при этом изучаются не только свойства электролитов, связанные с прохождением тока (электропроводность и др.), но и другие свойства электролитов (вязкость, сольватация, химические равновесия и др.). Теорию электролитов можно также рассматривать как часть общего учелия о растворах, однако в настоящем курсе она включена в раздел электрохимии. [c.383]

    Из сказанного ясно, что для осуществления электролитической диссоциации определяющую роль играет взаимодействие ионов с растворителем (в водных растворах — гидратация, в об щем случае — сольватация). На важное значение гидратации ионов впервые указали И. А. Каблуков (1891) и В. А. Кистя ковский (1888—1890). Они положили начало развитию теории электролитов в направлении, которое указывал Менделеев, т. е. объединили так называемую сольватную теорию и физическую теорию Вант-Гоффа — Аррениуса.  [c.392]

    Реакции переноса электрона. Реакции переноса электрона, являясь простейщим типом химического процесса, весьма распространены в фотохимии. Перенос электрона, происходящий при взаимодействии возбужденных молекул с донорами или акцепторами электрона, связан с тем, что при возбуждении молекул уменьщаетсч их потенциал ионизации и возрастает сродство к электрону. Такое взаимодействие возбужденных молекул с донорами и акцепторами электрона приводит к различным химическим и физическим процессам. В малополярных растворителях часто наблюдается образование возбужденных комплексов переноса заряда — эксиплексов. В полярных растворителях, где сольватация понижает энергию эксиплексов, реакция их образования становится необратимой и образуются иоп-радикальпые пары и свободные ион-радикалы. Образование эксиплексов и ион-радикалов может быть представлено следующей схемой  [c.176]

    Другим внешним фактором, тг1кн е играющим сущест-вепную роль в стабилизации органических ионов, является природа растворителя. Многостороннее по своему характеру влияние растворителя можно схематически свести к двум аспектам. С одной стороны, полярный растворитель, т. е. жидкость с высокой диэлектрической постоянной, чисто физически снижает кулоновское взаимодействие зарядов. Этот эффект может быть значительным например, переход от неполярного растворителя (гексана) к полярному (ацетонитрилу) уменьшает кулоновские силы в 21 раз. С другой стороны, нековалентные взаимодействия молекул растворителя с ионами обоих знаков, такие, как заряд-динолг.ное взаимодействие, образование водородных связей, комплексов разного типа — все то, что обобщенно обо. шачают термином сольватация , приводят к значительному экранированию центров заряда молекулами растворителя и одновременно — к дальнейшей делокализации заряда, распределению его между ионом и сольватной оболочкой. [c.75]

    Прн отнесении частот в спектре необходимо учитывать условия регистрации спектра физическое состояние образца, химическую природу растворителя, концентрацию, псмпературу и т. д. Все эти факторы могут привести к смещению частот колебаний, приведенных в таблицах характеристических частот из-за влияния внешних (ассоциация, сольватация) и внутренних (электрические, стерические и др.) факторов. Наблюдаемые отклонения составляют обычно 10—20 см однако иногда достигают 50 см и больше. Интенсивности полос должны иметь ожидаемую величину, и все другие доступные данные, как химические, так и спектральные (ЯМР, УФ и др.), должны согласовываться с предложенной структурой. [c.202]

    Величина а по своему физическому смыслу соответствует расстоянию, до которого могут сближаться электрические центры двух ионов. Однако сольватация ионов делает эту величину неопределенной (рис. 9). Поэтому значение а подбирают, исходя из наилучшего соответствия формулы (IH.55) экспериментальным данным. Таким образом, формула (П1.55) является полуэмпирической. Результаты расчета по формуле (П1.55) при д=4,8 A совпадают с экспериментальными данными для водных растворов Na l при 25°С с точностью до 1ч-2% вплоть до т=0,1. Ниже приведены средние коэффициенты активности для водных растворов Na l при 25°С  [c.41]

    Химические явления в процессе растворения впервые были отмечены Д. И. Менделеевым. Химическое взаимодействие молекул растворителя с частицами растворенного вещества называется сольватацией, а получающиеся при этом соединения —сольватами. Частный случай взаимодействия частиц растворенного вещества с растворителем — водой был назван гидратацией, а продукты взаимодействия (например, H2S04 H20) — гидратами. Гидратная теория растворов объяснила целый ряд явлений, наблюдавшихся при растворении и противоречащих физической теории растворов. Считая растворение дроблением вещества, сопровождающимся увеличением объема последнего, физическая теория могла лишь объяснить поглощение тепла при растворении.точки зрения гидратной теории закономерно и выделение теплоты, так как образование гидратов — обычно экзотермический процесс. Получило объяснение и скачкообразное изменение некоторых свойств растворов (например, плотности р или ее производной по концентрации dp/d ) при непрерывном изменении содержания растворенного вещества. Скачкообразное изменение свойств отвечает изменению состава продукта взаимодействия растворителя с растворенным веществом — гидрата-при увеличении (или уменьшении) содержания растворенного вещества в растворе. [c.146]

    Сольватацией называется межмолекулярное взаимодействие частиц растворенного вещества и растворителя, приводящее к перестройке физической структуры растворителя и к образованию агрегатов частиц обоих видов (вольватов), [c.82]

    В растворах может протекать разрушение структуры растворителя под действием растворенных частиц или связывание растворенных частиц электролитов с молекулами растворителя (воды) в сольваты (гидраты). О том, что такие процессы начинают заметно проявляться, можно судить по отклонению коэффициента активности от 1 при некоторых определенных концентрациях вблизи границ полной сольватации ГПС (или гидратации — ГПГ). В общем случае сольватационные процессы [135] делят на физические, присущие всем системам, и на химические, обусловленные свойствами данной конкретной системы. Степень протекания физических сольватацион-уых процессов зависит от свойств растворителя и таких свойств растворенных частиц, как их заряд, дипольный момент, масса, магнитный момент, а также от кинетических параметров — скорости и момента количества движения. [c.91]

    СГ также окружен шестью молекулами воды. Расстояние С —О составляет 0,325 нм. Сходную структуру имеет и первая гидратная оболочка хлорида никеля N1012, растворенного в воде, и гидраты, по существу, представляют собой координационные соединения, в которых молекулы воды являются лигандами. Таким образом, проблема сольватации ионов тесно связана с химией координационных соединений и теорией поля лигандов. Здесь нет ни возможности, ни необходимости излагать проблемы теории поля лигандов, химии координационных соединений и другие вопросы, связанные с изучением сольватации ионов. Материалы и библиографию о сольватации ионов можно найти в книгах О. Я. Самойлова [411, К. П. Мищенко и Г. М. Полторацкого [42], Н. А. Измайлова [43], Р. Робинсона и Р. Стокса [44], Л. Эндрюса и Р. Кифера [44], В. С. Шмидта [45], серии монографий Современные проблемы электрохимии [46—49), сборнике Вопросы физической химии растворов электролитов [50]. Проблемы теории поля лигандов и химии координационных соединений рассматриваются в книгах Р. Коттона и Дж. Уилкинсона [51], И. Б. Берсукера [52] и многих других изданиях. [c.91]


Смотреть страницы где упоминается термин Сольватация физическая: [c.96]    [c.180]    [c.466]    [c.238]    [c.312]    [c.330]    [c.52]   
Термодинамика и строение водных и неводных растворов электролитов (1976) -- [ c.51 , c.239 ]




ПОИСК





Смотрите так же термины и статьи:

Сольватация



© 2025 chem21.info Реклама на сайте