Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Железа ион в воде реакции переноса электрон

    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]


    Отыскивая аналогию предполагаемой первичной фотохимической реакции в области обычной фотохимии, мы находим ее в некоторых явлениях, описанных в главе IV. Там указывалось, что поглощение света неорганическими ионами в растворе часто ведет к окислению воды, даже если этот эффект остается скрытым вследствие большой скорости обратных реакций. В растворах некоторых красителей подобный фотохимический перенос электронов происходит в присутствии добавочных восстановителей, например нонов закисного железа, а иногда в их отсутствие. В системе тионин—ион закисного железа обратная реакция так медленна, что смесь успевает потерять на свету свою окраску (как описывалось в главе IV), несмотря на то, что окислительный потенциал тионина на несколько десятых вольта более положителен, чем у иона окисного железа. Эта наиболее известная фотохимическая [c.156]

    Однако в отсутствие фотосинтетических агрегатов (энзимов и т. д.) молекулы хлорофилла не способны вызывать фотосенсибилизированную окислительно-восстановительную реакцию с участием воды, как донора, и реагентов Хилла в качестве акцепторов. С другой стороны, было показано, что хлорофилл сенсибилизирует в растворе окисление молекулярным кислородом аллилтиомочевины [733], процессы переноса электронов (или водорода) от аскорбиновой кислоты и фенилгидразина к Сафранину, Метиловому красному [546, 734—738]. Эти сенсибилизированные окислительновосстановительные реакции, обратимое фотовосстановление хлорофилла аскорбиновой кислотой с образованием промежуточного продукта ярко-розового цвета (реакция Красновского [233]), а также обратимое фотоокисление хлорофилла хинонами или солями трехвалентного железа [739—741] по своей природе аналогичны фОтореакциям синтетических красителей (см. стр. 388) [742]. [c.464]

    Изучение реакции фотопереноса электрона. Известно, что при фотолизе водных растворов, содержащих ионы металлов переменной валентности (например Сг +, Мп +, Ре +), наблюдается перенос электрона от иона металла к молекуле воды и распад последней на 0Н и Н. Так, при фотолизе раствора соли двухвалентного железа идет следующая реакция  [c.112]

    В соответствии с этим механизмом ион трехвалентного железа образует смешанный комплекс одновременно с ендиолом и пероксидом водорода. Смешанный комплекс затем претерпевает кислотно-основное превраш,ение при участии молекул воды из раствора, а также участует в реакции переноса электрона, в которой ион трехвалентного железа служит мостиковой группой между аскорбиновой кисл1отой и пероксидом водорода. В результате аскорбиновая кислота окисляется, а пероксид водорода восстанавливается (гл. 8). [c.239]


    Цитохром l (из митохондрии) — гемопротеид с молекулярной массой 40 ООО— содержит четыре геминовые группы на моль ферл1ента. Цитохром с растворим в воде, имеет молекулярную массу 13 ООО. Цитохром а входит в состав цитохромоксидазы, катализирующей завершающую фазу реакции переноса электронов от восстановленного цитохрома с (окисляя его железо в Fe ) на молекулярный кислород, используя при этом протон воды и образуя воду. Цитохром а представляет собой железоцитопорфирин. Цитохромоксидаза содержит два атома меди на моль фермента молекулярная масса 70 ООО. [c.560]

    Ф= 1,49-10 дин-см- , а для Ре + ф = 4,6-10 дии-смг . Приведенная масса для системы ион железа — 6 молекул воды сольватной оболочки т 6 -10-23 откуда Треорг = V" для Ре + и Ре + равны 1,2-10 и 6,6-10 сек, т. е. при реакции обычных молекул Треорг сравнимо или меньше Однако при реакции переноса электрона, масса которого очень мала, т ф Ю" сек — оболочка не успевает перестроиться. Тем не менее будем считать, что для большинства реакций (включая перенос протона) подобный вид реорганизации оболочки успевает произойти. [c.161]

    Смешанные популяции почвенных бактерий в анаэробных условиях восстанавливают ионы Fe(III) до Fe(II). Если в среде помимо Fe(III) присутствуют также ионы нитрата и нитрита, то сначала восстанавливаются они (до нитрита и Nj, денитрификация) и лишь после этого-ионы Fe(III). Предполагают, что перенос электронов на трехвалентное железо осуществляет нитратредуктаза А. Поскольку восстановление нитрата сопряжено с окислительным фосфорилированием, не исключено, что и восстановление Ре(1П) может использоваться в процессе анаэробного дыхания . Окислительно-восстановительный потенциал E , который для пары Fe /Fe равен + 770 мВ, делает такую реакцию термодинамически возможной. Поскольку оксиды трехвалентного железа практиче-ски нерастворимы в воде, они сначала должны быть переведены в растворимую форму, способную проникать внутрь бактериальных клеток. Это, вероятно, осуществляется с помощью сидерофоров. Неудивительно, что в таких условиях наблюдается лишь медленный и незначительный рост бактерий. [c.324]

    Авторы считают, что им удалось на основе прямого анализа изотопного распределения ионов железа в твердой фазе по двум разным валентным состояниям установить наличие достаточно быстрого электронного обмена во льду между Fe2+ и Fe3+. Применение новой методики позволило оценить константы скорости реакции электронного обмена непосредственно во льду вплоть до весьма низких температур. Среднее расстояние между ионами железа при исследованных концентрациях более чем в 10 раз превышает. расстояние между соседними молекулами воды, что исключает непосредственный контакт между ионами, если предположить равномерное распределение их по образцу. Авторы считают, что полученные значения констант скоростей реакции не обусловлены диффузией ионов во льду, а связаны с переносом электронов в замороженных растворах, в котором, вероятно, участвуют молекулы среды. С этой точки зрения трудно понять наличие сильной (Е= = 39,4 кДж/моль) температурной зависимости скорости электронного обмена гари температурах выше 159 К, которая свидетельствует против заметной роли механизма дальнего тувнельного перехода электронов от ионов Fe2+ к ионам Fes+ [330, 331]. [c.176]

    Роль марганца в обмене веществ у растений сходна с функциями магния и железа. Марганец активирует многочисленные ферменты, особенно при фосфорилйрованни. Благодаря способности переносить электроны путем изменения валентности он участвует в различных окисли-тельно-восстановительных реакциях. В световой реакции фотосинтеза он участвует в расщеплении молекулы воды. [c.25]

    В реакциях с перекисью водорода наиболее резко от ионизированного железа отличаются ферри-формы этих гемопротеинов. В обеих системах образуются комплексы. Хотя ион окисного железа образует только один парно-ионный комплекс РеОоН , в то время как пероксидаза может в зависимости от условий опыта образовать три комплекса, из которых первый, вероятно, имеет указанную парно-ионную структуру% основное отличие состоит в типе претерпеваемой комплексом реакции. Комплекс иона окисного железа не определяет кинетику, и доминирующей реакцией является перенос электрона, в результате чего происходит частичное окисление молекулы перекиси. В комплексах гемопротеинов с перекисью последняя расходуется в реакциях, при которых перекись восстанав.тавается до воды. [c.245]

    Магний—довольно электроотрицательный металл (5 g2+/Mg= = —2,1 В) —корродирует в свободном от кислорода нейтральном растворе хлористого натрия с выделением водорода. Железо в таких же условиях остается нетронутым. В то же время при многих коррозионных процессах в растворах, содержащих кислород, реакции с выделением водорода и восстановлением кислорода протекают одновременно. Относительную роль кислорода, гидратированного протона и молекулы воды в процессе коррозии установить сложно, поскольку она зависит от таких факторов, как природа металла, раствора, значения pH, концентрации растворенного кислорода, температуры, возможности образования комплексов и др. Скорость реакции с восстановлением водорода обычно контролируется активацией и в существенной степени зависит от природы электрода, хотя pH раствора, температура и пр. также оказывают определенное влияние. Поэтому в данном случае зависимость между перенапряжением и плотностью тока отвечает уравнению Тафеля (1.19), причем на значениях а и Ь сказываются природа металла и состав раствора. При высоких плотностях тока перенос зарядов становится существенным и линейное соотнощение между Т1 и logi нарушается. При восстановлении кислорода контроль активацией существен при низких плотностях тока, но при повышении плотности тока большее значение приобретает диффузия, и скорость коррозии тогда соответствует предельной плотности тока. Отметим, что в отличие от перенапряжения активации перенапряжение концентрации не зависит от природы электрода, хотя пленки и продукты коррозии, которые задерживают передачу электронов на катодных участках, будут заметно влиять на ее скорость. [c.29]



Смотреть страницы где упоминается термин Железа ион в воде реакции переноса электрон: [c.396]    [c.106]    [c.295]    [c.243]    [c.134]    [c.278]    [c.158]    [c.156]    [c.308]    [c.115]   
Быстрые реакции в растворах (1966) -- [ c.60 , c.62 ]




ПОИСК





Смотрите так же термины и статьи:

Вода перенос

Железа ион в воде

Железо водах

Железо реакции

Реакции переноса электрона

Реакция воды



© 2025 chem21.info Реклама на сайте