Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл фотоокисление

    Аналогичные результаты были получены в реакциях фотопереноса электрона для пигментов (хлорофиллы, феофитин и др.) в присутствии акцепторов (хиноны, метилвиологен, нитросоединения) и доноров (аскорбиновая кислота, фенилгидразин, гидрохинон, Fe +) электрона. Образование ион-радикалов красителей при фотохимических окислительно-восстановительных реакциях протекает через ряд промежуточных стадий, включающих образование возбужденного комплекса донорно-акцепторного типа и ион-ра-дикальных пар. Донорно-акцепторный комплекс с триплетным состоянием красителя был обнаружен в реакции фотоокисления хлорофилла я-бензохиноном в толуоле. Вероятность дезактивации эксиплекса в направлении образования ион-радикальной пары зависит от степени переноса заряда внутри возбужденного комплекса. В свою очередь степень переноса заряда определяется сродством к электрону и потенциалом ионизации как триплетной молекулы красителя, так и невозбужденной молекулы донора или акцептора электрона. [c.178]


    В результате чего получается окисленный растворитель во-вторых, катализом реакции, обратной (18.14), системой Оа — НО , как предполагают Франк и Ливингстон в реакции (18.12). С другой стороны, если выцветание является процессом окисления, как показано в реакции (18.16), то действие кислорода можно объяснить только каталитическим ускорением по реакции (18.12), так как окисление восстановленного продукта г8 кислородом дало бы в качестве конечного продукта окисленный хлорофилл. Таков возможный механизм необратимого фотоокисления хлорофилла, который будет разбираться ниже. При объяснении обратимого выцветания с хлорным железом таутомеризацию можно заменить реакцией с растворителем. Например, можно вместо реакции (18.13) дать следующие уравнения  [c.495]

    Выяснение механизма сенсибилизированного фотоокисления дает возможность сделать несколько полезных выводов по отношению к фотобиологии. Например, рассмотрим защитное действие каротиноидов в биологических системах. Очевидно, каротиноиды защищают фотосинтезирующие организмы от летального действия их собственного хлорофилла (см. с. 231), который является превосходным сенсибилизатором фотоокисления. Было показано, что -каротин — крайне эффективный ингибитор синглетного кислорода и может также ингибировать фотоокисление. Например, -каротин в концентрации [c.175]

    В-пятых, хлорофилл очень прочно удерживает молекулу Н2О в координационной сфере Mg + и с трудом обменивает ее даже на Ру и Pip. Это и обусловливает возможность фотоокисления воды триплет-ным состоянием хлорофилла в процессе фотосинтеза. [c.272]

    Если описанное выше фотоокисление гидроксильных ионов представляет собой уникальное свойство высших растений, то вторая фотохимическая реакция, связанная с хлорофиллом, является общей для всех фотосинтезирующих систем. Действительно, Ло- [c.272]

    Каротиноиды выполняют две функции с одной стороны, они участвуют в фотосинтезе как светособирающие пигменты, т.е. поглощают световую энергию и передают ее хлорофиллу с другой стороны, они предохраняют хлорофилл от фотоокисления. Сине-зеленые мутантные формы пурпурных бактерий, лишенные каротиноидов, способны расти только на слабом свету, а при высокой интенсивности света гибнут. [c.378]

    Общая схема фотосинтеза цианобактерий представляет собой определенную серию реакций, включающую две последовательно действующие фотореакции (рис. 75, В). Свет, поглощаемый фоторецепторами фотосистемы II — фикобилипротеинами, хлорофиллом а, каротиноидами, — передается на хлорофилл реакционного центра. Поглощение кванта света этим пигментом приводит к отрыву от него электрона и акцептированию молекулой особой формы пластохинона. Окисленная молекула Пб о восстанавливается за счет электронов воды, подвергающейся фотоокислению в реакционных центрах фотосистемы II  [c.288]


    Каждодневные наблюдения показывают, что в растении хлорофилл устойчив по отношению к воздуху и свету. Но мы также знаем из опыта, что когда освещение делается слишком сильным или когда фотосинтез тормозится засухой, ядами или углекислотным голоданием, то растения желтеют или выцветают в этом случае их пигменты претерпевают фотохимическое разложение. Аналогичный эффект можно гораздо быстрее вызвать в присутствии избытка кислорода (см. главу XIX). Отсюда вероятно, что выцветание вызывается фотоокислением пигмента. [c.499]

    Гаффрон [87] возражал против механизма реакции (18.20) для фотоокисления хлорофилла, так как, по его наблюдениям, хлорофилл не поглощает кислорода и не образует перекисей ни на свету, ни в темноте. [c.504]

    Гаффрон предполагает, что фотоокисление хлорофилла может быть косвенным следствием сенсибилизированного окисления само-окисляющихся примесей (акцепторов) по следующей схеме реакций [c.504]

    Одним из способов, которым растворитель может влиять на фото-окисление хлорофилла, является прямое участие его в реакции, вызывающей выцветание, или в реакции, восстанавливающей первоначальную окраску. В присутствии кислорода эти реакции могут повести в конечном результате к сенсибилизированному окислению растворителя. Таким образом, растворитель может защитить пигмент от окисления на свету, отвлекая на себя окислительное действие, т. е. прямое фотоокисление пигмента может быть заменено сенсибилизированным фотоокислением растворителя. Подобное же откло-пение может быть вызвано растворенными антиокислителями, которые сами окисляются на свету, но препятствуют фотоокислению [c.505]

    Гаффрон [6] наблюдал обратимое образование органических пе- рекисей аминов в опытах с сенсибилизированным хлорофиллом фотоокислением (см. табл. 74). [c.303]

    Хлорофиллы называют фотокатализаторами. С формальной точки зрения это верно, так как в ходе фотореакции хлорофилл не превращается в другое соединение. Более вероятно, однако, что молекула претерпевает временное химическое изменение. По мнению Катца [961] и Левитта [1132], самая существенная черта фотореакции — это переход электрона от хлорофилла к акцептору. Говоря словами Льюиса и Липкина [1139], акцептор претерпевает фотовосстановление, а хлорофилл — фотоокисление. Суть этой идеи получила всеобщее одобрение [74, 383, 384, 949, 962, 1401]. [c.91]

    Помимо хлорофилла, который является основным видом фотосинтетических пигментов, в зелепо.м листе (в так называемых хлорипластах, представляющих собой сложные специализированные биологические структуры) содержатся и другие пигменты — каротинонды и фикобелины, которые обычно называют вспомогательными, Эти пигменты, по современным представлениям, принимают известное участие в фотосинтезе, а также защищают хлорофилл от фотоокисления. Помимо пигментов, основными компонентами хлоропластов, в которых, собственно, и осуществляется весь процесс фотосинтеза, являются липоидные вещества и белки, которые содержат большое число ферментов, необходимых для осуществления последующих стадий фотосинтеза, не связанных с воздействием солнечной радиации. [c.177]

    Сопряженные диены и полнены поглощают молекулярный кислород и образуют перекиси, часто называемые фотоокисями перекиси образуются в результате присоединения кислорода к концам диеновой системы. Присоединение кислорода протекает быстро при ультрафиолетовом облучении и медленно на рассеянном свету. Реакция формально относится к типу реакции Дильса — Альдера, в которой роль диенофила играет кислород. Примером такой реакции является образование аскаридола аскаридол встречается в природе и может быть получен из а-терпинена фотоокислением в присутствии сенсибилизатора, например хлорофилла. [c.611]

    Поскольку при переходе в возбужденные состояния (синглетные и триплетные) энергия молекул повышается, последние приобретают химические свойства, которых не было у невозбужденных молекул [67, 67а]. Изменения значений рА а функциональных групп при переходе в возбужденное состояние могут приводить к диссоциации протонов или к их присоединению. Диссоциация на ионы или радикалы иногда сопровождается разрывом связей. Могут протекать реакции фотоприсоединения и фотоотш,епления, а также изомеризация молекул, играюш,ая важную роль в функционировании зрительных рецепторов. Возбужденные молекулы могут стать сильными окислительными агентами, способными принимать атомы водорода или электроны от других молекул. Примером такого рода служит фотоокисление ЭДТА рибофлавином (подвергающимся фотовосстановлению, как показано на рис. 8-15). Более важным с точки зрения биологии процессом является фотосинтез, в ходе которого возбужденные молекулы хлорофилла осуществляют фотовосстановление других молекул, временно оказываясь при этом в окисленном состоянии. К сожалению, ценность исследования фотохимических реакций сильно снижается возможностью протекания множества параллельных реакций, зачастую приводящих к образованию огромного количества разных фотохимических продуктов (достаточно взглянуть на тонкослойную хроматограмму продуктов распада рибофлавина, рис. 2-34). [c.33]

    Фотоокисление кислородом (фотооксидироваиие). Этот тип фотохимических реакций, происходящих с фотовозбужденной молекулой в присутствии молекулярного кислорода Оз, чрезвычайно широко распространен и лежит в основе естественного фотовыцветания природных (хлорофилл) и искуственных красителей, разрушения технических и биополимеров, прогор-кания жиров и масел и т. д. [c.268]


    В ТО же время В. Б. Евстигнеев обнаружил способность хлорофилла к легкому обратимому фотоокисленио такими слабыми окислителями, как хиноны  [c.740]

    По-видимому, должен существовать общий механизм, который регулирует образование хлоропласта в целом. Как осуществляются при этом тонкие взаимодействия компонентов и их контроль, не известно, однако были обнаружены тесные генетические взаимосвязи между ними. Должны синтезироваться все компоненты, и все они должны быть доступны для включения в тилакоидные мембраны. В противном случае синтетические процессы подавляются. Например, действие некоторых гербицидов заключается в подавлении биосинтеза каротиноидов. Если этиолированные проростки или культуры водорослей Euglena, выращенные в темноте, обработать такими гербицидами, то нормальные каротиноиды хлоропластов не образуются и, следовательно, не включаются в фотосинтетические мембраны. В результате не синтезируются и другие компоненты хлоропластов, в том числе хлорофилл, и, следовательно, не происходит развития хлоропласта в целом. Даже если это было бы и не так, то подавление образования каротиноидов привело бы к тому, что весь синтезированный хлорофилл и зарождающиеся фотосинтетические мембраны оказались бы без защиты от фотоокисления (разд. 10.4.2) и разрушались бы. Поэтому гербициды, подавляющие биосинтез каротиноидов в растениях, очень эффективны. [c.363]

    Относительно фотоокисления эргостерина см. стр. 53. Описание фотохимического образования пе]1екиси при передаче кислорода хлорофиллом см. С а f f г о п, В. 60, 2229 (1927). [c.17]

    Обнаружено, что в фотоокисленном состоянии хлорофилл а реакционного центра фотосистемы И имеет окислительно-восстановительный потенциал порядка +1000...+ 1300 мВ, т.е. настолько положительный, что может быть восстановлен за счет электронов воды. Механизм реакций, связанных с переносом электронов от молекул воды на П зо, неизвестен. Установлено, что [c.287]

    Электрон от акцептора фотосистемы II проходит через цепь переносчиков и поступает в реакционный центр фотосистемы I, на фотоокисленную форму хлорофилла а — пигмент Пуоо ( о=+500 мВ), заполняя электронную вакансию аналогично тому, как это происходит при фотосинтезе зеленых серобактерий. Перенос электронов от акцептора электронов фотосистемы II до реакционного центра фотосистемы I — темновой процесс, состоящий из серии этапов, в которых участвуют переносчики с понижающимися восстановительными потенциалами, такие как цитохромы разного типа, пластоцианин (медьсодержащий белок), пластохинон. Электронный транспорт на этом участке на определенных этапах сопровождается ориентированным поперек мембраны переносом протонов и, следовательно, генерированием Дрн+> разрядка которого с помощью протонной АТФ-синтазы приводит к синтезу АТФ. [c.288]

    Фотоокисление хлорофилла и каротина в белом свете также приводит к образованию аддукта состава 1 1с молекулярным кислородом. Высокий выход достигается с пленками толщиной в 20—40 молекулярных слоев на ряде неорганических подложек [106]. Кристаллы рубрена так же обнаруживают глубокое фотоокисление [80]. [c.310]

    Ненасыщенные органические перекиси труднее получить аутоокислением, чем их насыщенные аналоги, ввиду возможного вовлечения в этот процесс и двойной связи. Выдвинутое Фармером и Сьютономположение о внедрении кислорода по а-углерод-ному атому относительно двойной связи и возможной миграции последней получило подтверждение во многих последующих работах. Так, показано, что при фотоокислении тетрагидромир-цена при 25° С в присутствии хлорофилла в качестве сенсибилизатора получается смесь двух гидроперекисей. Это указывает на миграцию двойной связи из первоначального положения  [c.22]

    Если в качестве акцептора электронов используют феррицианид, то образование каждого 1 мкг-атом кислорода сопровождается фосфорилированием 1 мкмоль АДФ до АТФ в процессе нециклического фотосинтетического фосфорилирования (вариант 1). Если же акцептором электронов служит краситель, например 2,6-дихлорфенолин-дофенол или 2,3,6-трихлорфенолиндофенол, то образование кислорода происходит без изменений, но фосфорилирование фактически прекращается (вариант 2). Каталитические количества добавленного красителя сохраняются в окисленном состоянии благодаря неферментативному окисляющему действию феррицианида. Было высказано предположение, что окисленный краситель переводит электроны на окислительный уровень цитохромов и, таким образом, осуществляется обход реакции фосфорилирования, необходимой для взаимодействия цитохромов с хлорофиллом. Этот отличающийся от фосфорилирования процесс, связанный с восстановлением красителя и образованием кислорода, представляет собой фотоокисление гидроксильных ионов. Хотя природа пигмента , участвующего в фотоокислении гидроксильных ионов, в настоящее время неизвестна, спектр действия этого процесса показывает, что речь идет не о хлорофилле а. Предполагают, что этот пигмент может быть хлорофиллом Ь или одним из сопутствующих пигментов, найденных только в организмах, выделяющих кислород (высших растениях и водорослях). [c.272]

    Тилакоидные мембраны и светособирающие пигменты (пигменты антенн). Тилакоидная мембрана содержит в себе пигментные молекулы (хлорофи Гл а, хлорофилл Ь и каротиноиды), переносчики электронов и фермейты. Подавляющее большинство молекул хлорофилла ( 99,5%), а также дополнительные пигменты (каротиноиды, фикобилипротеины) ответственны за поглощение света и распределение энергии они образуют систему антенны. Лишь незначительная часть хлорофилла а выполняет роль фотохимического реакционного центра, в котором цротекает собственно фотохимическая окислительно-восстановительная реакция. Пигменты антенн (светособирающие пигменты) улавливают свет и передают энергию хлорофиллу реакционного центра (Каротиноид Каротиноид Хлорофилл - - Каротиноид - Хлорофилл + Каротиноид). Каротиноиды выполняют также защитную функцию при очень ярком солнечном освещении они отдают избыточную энергию в окружающую среду и тем самым защищают молекулы хлорофилла от фотоокисления. Система светособирающих пигментов и реакционный центр объединены в так называемую фотосинтетиче-скую единицу. [c.385]

    Механизм фотоокисления в присутствии хлорофилла суик -ственно отличается от автоокисления [44—46]. [c.98]

    В последующих экспериментах Бау р [157] пришел к выводу, что хлорофилл может образовывать формальдегид при восстановлении двух своих карбоксильных групп, и, кроме того, он установил, что это восстановление происходит за счет воды при посредстве вспомогательной обратимой окислительно-восстановительной системы, например метиленовая синь — лейкометиленовая синь. Это заключение, если оно верно, должно иметь исключительное значение для теории фотосинтеза и для имитации этого процесса 1п т11го. Оно было основано на наблюдении, что можно обнаружить формальдегид в воде, в которой находились экспонированные на свету коллоидные пленки, пропитанные спиртовыми растворами двух красителей. Мы уже упоминали (стр. 72) о дискуссии но поводу образования формальдегида в желатинных пленках, содержащих только хлорофилл. Баур не обнаружил формальдегида, освещая коллоидные пленки с чистым хл0])0фи.1л0м, по получил положительные результаты с пленками, содержащими хлорофилл и. метиленовую синь. Одним из возможных объяснений этих резу.1ьтатов было бы фотоокисление метильных групп метиленовой сини хлорофиллом (или метильной группы хлорофилла метиленовой синью). Баур, однако, предлагает несколько более сложный механизм, представленный рядом уравнений (4.27), где возбужденные хлорофильные моле- [c.96]

    В этой работе не делалось попыток доказать выделение кислорода. Допуская, что кислород может вызывать частичное фотоокисление, хлорофилла, Баур стремился улучшить выход добавлением веществ, способных улавливать кислород — каротина и рубрена. Рубрен (в бензоле) не оказал влияния, каротин (в суспензии пальмового масла) увеличил выход на 30°/о> чему автор придает большое значение. Формальдегид не образовывался из хлорофилла, адсорбированного на глиноземе (суспензия в растворе метиленовой сини), из нефлуоресцирующего препарата хлорофилла (Сп-феофи-тин) и из воднорастворимых красок (например, галлоцианин), не [c.97]

    Как уже указывалось выше, вопрос о роди хлорофилла в фотосинтезе будет рассмотрен нами в главе XIX пока мы будем пользоваться схемами и символами X и г там, где в одигинальных работах может стоять СЫ — хлорофилл. Однако мы сохраним допущение, что тот же самый катализатор, который в окисленной форме участвует в фотоокислении воды, в восстановленной форме участвует в восстановлении двуокиси углерода. (Менее специфичным предположением было бы считать фотоокисление и фоторедукцию отделенными друг от друга неизвестным числом промежуточных окислительно-восстановительных катализаторов.) Другими словами, мы предполагаем, что только один из промежуточных катализаторов, X У или Ъ, является фотокатализатором (фиг. 15). [c.167]

    ОТНОСЯЩИХСЯ К вопросу окисления и восстановления хлорофилла, э проблема не получила удовлетворительного разрешения. Мног> органические красители, например индиго, метиленовая синька, ти пин, являются наиболее широко известными примерами обратим окислительно-восстановительных систем. Окрашенная форма, обыч] имеющая хиноидную структуру, является окислителем, а восстав вителем — бесцветная или слабо окрашенная форма, например вади белая, лейкометиленовая синяя и т. д. Редко наблюдается обрати, зависимость, когда восстановленная форма окрашена, а окисленн бесцветна, как, например, в виологенах Михаэлиса. Часто считали, ч и хлорофилл может иметь восстановленную бесцветную или ела окрашенную форму — лейкохлорофилл, из которого он может вно образоваться при окислении. Допускалось также, что хлорофи. образуется в растениях при окислении или фотоокислении бесцве ного предшественника многие исследователи пытались изолирова последний из семян или этиолированных проростков (глава XV). [c.462]

    В главе IV, говоря об искусственном фотосинтезе, мы рассмотрели опыты Ушера и Пристли [27] по предполагаемому образованию формальдегида при фотохимическом восстановлении хлорофилла в присутствии двуокиси углерода, а также критические замечания, сделанные рядом авторов [28—30, 32]. Мы также упоминали, что Уорнер, Вагер и Юарт считают, что формальдегид может образоваться вследствие фотоокисления хлорофи.ма. Подобное же заключение можно извлечь из опытов Остергаута [33], Он помещал бумагу, окрашенную экстрактом хлорофилла в четыреххлористом углероде, под герметический стеклянный колокол и выставлял на солнечный свет до тех пор, пока она не выцветала. В открытой чашечке с водой, поставленной под колоколом рядом с бумагой, обнаруживалось присутствие альдегида. Однако Вильштеттер и Штоль [32] отрицают образование формальдегида при фотоокислении чистых препаратов хлорофилла. Может быть, альдегиды способны образовываться на свету прн сенсибилизированном хлорофиллом окислении метилового или этилового спирта. [c.500]

    Как упоминалось выше, химическая природа процесса выцветания неизвестна и, вероятно, сложна многие авторы считают, что выцветание вызывается фотоокислением, но не следует упускать из виду и возможность фоторедукции, особенно в легко окисляемых растворителях или в присутствии окисляемых примесей. Удаление магния может быть промежуточной ступенью, вызывающей временное изменение чисто зеленого цвета хлорофилла на оливковый цвет феофитина. По Йоргенсену и Киду [31] и Аронову и Маккиннею [631, выцветание идет таким путем во всех кислых растворах, а в нейтральных или щелочных средах промежуточного образования феофитина не происходит. [c.503]

    Соображение, высказанное на стр. 488—490, предполагает следующую модификацию схемы Гаффрона. Во-нервых, роль акцептора А может играть растворитель во-вторых, вряд ли реакция между хлорофиллом и акцептором или растворителем является простой передачей энергии, изображ аемой реакцией (18.22а). Наиболее вероятным первичным процессом является окислительно-восстановительная реакция хлорофилла с растворителем, или с примесью, или со второй молекулой хлорофилла. Все схемы реакции, рассмотренные в разделе Первичный фотохимический процесс , например реакции (18.11) или (18.15), предполагающие обратимое образование окисленного хлорофилла (оСЫ), могут объяснить небольшое остаточное фотоокисление для этого необходимо допустить, что полной обратимости мешают побочные реакции, отнимающие некоторые окисленные молекулы хлорофилла у партнеров для обратной реакции. [c.505]

    Примерами веществ, которые защищают хлорофилл от фотоокисления, отвлекая реакцию на себя, являются бензидин и карати-ноиды [38, 39, 63], а также гидрохинон, п-бензохинон, фенол, резорцин, пирогаллол, дифениламин и анилин [52]. Их действие может основываться или на первичном взаимодействии возбужденного хлорофилла с защитным акцептором [c.506]


Смотреть страницы где упоминается термин Хлорофилл фотоокисление: [c.299]    [c.334]    [c.119]    [c.355]    [c.178]    [c.306]    [c.46]    [c.454]    [c.175]    [c.339]    [c.129]    [c.172]    [c.267]    [c.386]    [c.492]   
Биохимия Том 3 (1980) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Фотоокисление

Хлорофилл

Хлорофилл хлорофилл



© 2025 chem21.info Реклама на сайте