Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотермическая перегонка

    Укрупнение частиц дисперсной фазы при потере агрегативной устойчивости достигается в результате изотермической перегонки (растворение мелких и рост крупных частиц в соответствии с уравнением Кельвина) или за счет слипания (слияния) частиц — коагуляции. Наиболее распространен процесс коагуляции. В зависимости от природы системы и концентрации дисперсной фазы этот процесс может заканчиваться или осаждением частиц, или структурообразованием. [c.160]


    Агрегативная устойчивость пен характеризуется скоростью укрупнения частиц дисперсной фазы за счет коалесценции и изотермической перегонки. Стабилизация пен достигается с помощью ПАВ. В зависимости от природы ПАВ и свойств образуемых ими адсорбционных слоев, устойчивость пен обусловливается действием общих для дисперсных систем факторов стабилизации (ионно-электростатический, структурно-механический барьер и др.) и специфическим для пен и эмульсий эффектом Гиббса — Марангони [c.175]

    Выше указывалось, что обычная коагуляция в системах с твердой дисперсионной средой невозможна из-за огромной вязкости среды, препятствующей столкновению частиц между собой. Однако все же некоторое укрупнение частиц в таких системах возможно за счет изотермической перегонки вещества дисперсной фазы. Такое укрупнение частиц наблюдается, например, при длительном нагревании рубинового стекла прй температуре, когда давление пара металла уже достаточно высоко. При очень высоких температурах, когда происходит плавление дисперсионной среды, в подобных системах может наблюдаться и истинная коагуляция. При этом, если среда прозрачна, меняется и цвет системы. Например, при высокой температуре красный цвет рубинового стекла переходит в фиолетовый, а затем в синий вследствие агрегации частиц. Интересно, что двуокись олова, присутствующая в стекле, оказывает защитное действие и препятствует образованию агрегатов. [c.397]

    Сложнее зависимость изотермической перегонки от температуры, которая влияет и на растворимость, и на скорость процессов первой и третьей стадии. Чем меньше растворимость, тем больше роль этих стадий в кинетике всего процесса. Растворимость может увеличиваться, а может и уменьшаться с повышением температуры. В то же время повышение температуры всегда приводит к ускорению стадий растворения и роста частиц. Может случиться так, что при одной температуре лимитирующей является первая стадия, а при другой — вторая стадия. Обычно константы скорости химических реакций, к которым можно отнести стадии растворения и роста частиц, увеличиваются с повышением температуры быстрее, чем константа скорости диффузии. Например, при повышении температуры на 10°С коэффициент диффузии в растворах увеличивается на 30—40%, а константа химической реакции возрастает в 2—4 раза. Это обусловлено тем, что энергии активации процесса в диффузионной области находятся в пределах 5— 20 кДж/моль, а в кинетической области 50—200 кДж/моль. Таким образом, с понижением температуры скорости первой и третьей стадии изотермической перегонки резко уменьшаются по сравнению со скоростью диффузионной стадии и могут стать лимитирующими скорость протекания всего процесса перегонки. [c.278]


    Нормальной температурной областью для проведения процессов ректификации считают интервал от 20 до 250° С. Если температуры кипения разделяемых веществ лежат ниже комнатной температуры, то проводят низкотемпературную ректификацию с использованием специальных хладоагентов для конденсации паров дистиллята. Процессы перегонки, протекающие при 250—400° С, относят к высокотемпературной ректификации. Возможна также изотермическая перегонка, при которой температуру в кубе поддерживают постоянной, а изменяют рабочее давление. [c.249]

    Если перегонку проводят при постоянном давлении, то количество отбираемого дистиллята регулируют, меняя температуру. При изотермической перегонке, наоборот, температуру в кубе стабилизируют с помощью термостата, а давление непрерывно снижают. В этом случае на диаграмме разгонки давление (ось ординат) и количество отбираемого дистиллята (ось абсцисс) указаны при постоянной температуре. Изотермическую перегонку применяют, когда необходимо подобрать степень разрежения, требуемую для испарения определенного количества многокомпонентной смеси, [c.262]

    Была предпринята попытка применить для определения молекулярного веса асфальтенов методику так называемого принципа равных давлений паров [25]. Принцип этой изящной методики, предложенной более 70 лет назад [26], был экспериментально разработан К. Растом [27]. Если в замкнутом пространстве поместить два раствора (разной молярной концентрации) нелетучих веществ в одном и том же растворителе, то вследствие более высокого парциального давления паров растворителя над поверхностью менее концентрированного раствора будет происходить изотермическая перегонка растворителя от менее концентрированного раствора к более концентрированному до тех нор, пока молярные концентрации обоих растворов не уравняются и не установится равновесие. [c.81]

    Обычно рассматривают три стадии процесса изотермической перегонки растворение или испарение мелких частиц, перенос вещества от мелких частиц к крупным и рост крупных частиц. В зависимости от условий каждая из этих стадий может быть лимитирующей, т. е. иметь меньшую скорость и, таким образом, в большей степени тормозить процесс изотермической перегонки. Первая и третья стадии относятся к химическим процессам и, как [c.276]

    Часто скорость изотермической перегонки лимитируется скоростью диффузионного массопереноса в дисперсионной среде, которая следует закону Фика и зависит в данной среде (постоянный коэффициент диффузии) только от градиента концентраций или давлений (разности химических потенциалов). В свою очередь градиент концентраций (давлений) определяется различием раз- меров частиц, между которыми происходит массоперенос. Рассмотрим эту связь в системе с жидкой дисперсионной средой, в которой частицы разных размеров имеют различную раствори- мость (для газообразных сред соотношения останутся теми же, только вместо концентрации можно использовать давление)., В соответствии с уравнением Кельвина [применительно к растворам его часто называют уравнением Фрейндлиха — Оствальда, см. уравнение (II. 170)] растворимость с (г) связана с размером г сферических частиц следующим соотношением  [c.277]

    Эмульсии являются, как правило, грубодисперсными системами, средний размер частиц которых составляет м. Этот факт объясняется тем, что образующиеся в процессе эмульгирования очень мелкие капельки быстро исчезают вследствие изотермической перегонки". [c.13]

    К разговору об оптимальном размере элементов дисперсной фазы, которые стабилизируются эмульгатором, следует отметить следующее. Сопоставляя скорости процессов дробления, изотермической перегонки, коалесценции и образования защитного слоя [c.56]

    Это так называемый процесс изотермической перегонки, подробно разобранный в гл. 1.1. [c.185]

    Определение молекулярного веса путем сравнения осмотических давлений. Определение молекулярного веса сравнением осмотических давлений основано на том, что в замкнутой системе растворитель переходит из раствора с меньшей концентрацией в раствор с большей концентрацией благодаря изотермической перегонке (перегонке при постоянной температуре). [c.85]

    При застывании системы рост частиц дисперсной фазы обусловлен диффузией в них растворенного вещества из объема системы. При этом образующиеся пространственные, как правило, однородные структуры дисперсной фазы равномерно распределены в объеме и разделены прослойками из дисперсионной среды. Парафиноотложение из системы вызвано, прежде всего коагуляционными взаимодействиями частиц дисперсной фазы, которые могут приводить к оседанию или всплыванию частиц дисперсной фазы. В этом случае выделение парафинов сопровождается хаотическим ростом частиц дисперсной фазы, представляющих агрегативные комбинации неправильной формы. Укрупнение частиц при парафиноотложении может происходить двумя путями изотермической перегонкой, при которой более мелкие частицы растворяются, а крупные растут коагуляцией либо коалесценцией, заключающимися соответственно в слипании или слиянии дисперсных частиц. [c.241]

    Рх < 10-2 3 фазовые р > 10 дин) имеет скачкообразный характер. (2) Спекание керамики и других порошков, в том числе с участием топохимических реакций. (3) Изотермическая перегонка, например слеживание гигроскопических порошков (удобрений). Здесь отчетливо выступает природа формирования фазового кон- [c.307]


    Аммиак, 6 М водный раствор. Очищают изотермической перегонкой. [c.314]

    Неустойчивость золей может проявляться также в укрупнении частиц зе счет исчезновения или уменьшения размера более мелких. Процесс укрупнения частиц в золях аналогичен изотермической перегонке, при которой в замкнутом пространстве крупные капли или кристаллы растут за счет мелких вследствие большего давления насыщенного пара малых капель или кристалликов. Такая, неустойчивость золей, выражающаяся в появлении крупных частиц, проявляется тем быстрее, чем больше растворимость дисперсной фазы. Регулируя растворимость дисперсной фазы путем изменения состава дисперсионной среды илИ температуры, можно влиять на скорость процесса в жидкой среде. Именно на этом основаны методы, укрупнения мелких частиц, проходящих через фильтр, что особенно важно при проведении анализов в аналитической химии. Однако в связи с обычно очень малой растворимостью дисперсной фазы разрушение коллоидных систем в результате роста больших частиц за с 1ет малых происходит, как правило, весьма медленно, и с этим видом потери устойчивости исследователю, работающему в области коллоидной химии, приходится иметь Дело сравнительно редко. [c.259]

    Кривая распределения частиц в аэрозоле, т. е. содержание в нем частиц различных радиусов, зависит от происхождения аэрозоля и процессов, происходящих в аэрозоле после его получения (агрегация, коалесценция, изотермическая перегонка). [c.341]

    В заключение отметим, что в аэрозолях, как и лиозолях, могут изменяться размеры частиц не только за счет явления коалесценции и агрегации, но и вследствие изотермической перегонки дисперсной фазы, что приводит к укрупнению больщих частиц за счет испарения более мелких. Испарение капелек туманов может приводить в соответствующих условиях и к переходу аэрозоля в гомогенную систему подобно тому, как растворение дисперсной фазы лиозоля приводит к образованию истинно га раствора. [c.349]

    С явлением изотермической перегонки связано образование вторичных рудных месторождений многих металлов (Си, 2п, Сс1, N1 и др.). Образующиеся в глубинных зонах земной коры (при высоких Т и Р) гидротермальные растворы сульфидов (или окислов) этих металлов становятся при выходе в верхние зоны пересыщенными и протекание таких растворов через участки, где имеются зерна рудных тел, приводит к росту зерен. Путем изотермической перегонки образуются также сталактиты и сталагмиты. [c.73]

    Рассмотренный процесс называется изотермической перегонкой. [c.116]

    Наконец, фигуративная точка дойдет до положения с ". Это означает, чтО почти вся жидкость перешла в пар и при дальнейшем уменьшении давления система представляет собой смесь паров. исходного состава Ыт-, Рассмотренный процесс называется изотермической перегонкой. [c.114]

    Увеличение размера частиц может идти как за счет коагуляции, т. е. слипания частиц, так и за счет изотермической перегонки, или эффекта Кельвина. Этот эффект заключается в том, что вещество из мелких частиц переносится в крупные, у которых химический потенциал меньше. Постепенно мелкие частицы исчезают, а крупные увеличиваются. Коагуляция и изотермическая перегонка вызывают нарушение седиментационной устойчивости и разделение фаз (образование хлопьев, выпадение осадков, расслоение). В концентрированных системах коагуляция может привести к образованию пространственных структур и не сопровождаться разделением фаз. [c.430]

    Если растворено нелетучее вещество, то для определения активности а-х растворителя удобно выбирать первое стандартное состояние, т. е. полагать = 1 и у// = 1 для чистого растворителя, находящегося в растворе при данной температуре и давлении 1 атм. В этом стандартном состоянии химический потенциал растворителя в растворе равен химическому потенциалу чистого растворителя = = Разность Л1— [г°1 = ЯТ 1п йх представляет собой то изменение энергии, которое вызывается добавлением 1 моль растворителя к раствору с активностью а . Так как < 1, величина А(х = — р. отрицательна отрицательное значение А г отражает стремление раствора к разбавлению, когда он контактирует с растворителем через паровую фазу, т. е. посредством изотермической перегонки растворителя. [c.211]

    Изопиестический метод или метод изотермической перегонки. Вследствие того что давление пара над раствором полимера и растворителя различно, в замкнутой системе, состоящей из двух сосудов, соединенных между собой, будет происходить перегонка растворителя из одного сосуда в другой. При постоянной температуре эта перегонка продолжается до выравнивания давления, что сказывается в изменении первоначальных уровней растворов эталонного вещества и полимера в растворителе. Так как и полимер и эталонное вещество являются нелетучими, то их исходные количества не меняются. [c.151]

    Механизм осмоса легко представить на основе изотермической перегонки. Пусть полупроницаемая мембрана, имеющая микро поры, разделяет растворитель и раствор с концентрацией С (рис. II). В пору, ограниченную с одной стороны растворителем, а с другой раствором, идет испарение. Вследствие превыщения по [c.38]

    Высокодисперсные капельки воды, составляющие туман и облака, укрупняются в процессе изотермической перегонки, образуя капли дождя. [c.72]

    Если подобрать эталонный раствор известного вещества и определенной молярной концентрации так, чтобы растворитель не перегонялся из него в ту часть прибора, в которой помещен раствор с исследуемым веществом, то в этом случае изотермическая перегонка паров растворителя будет идти в обратном направлении, т. е. пз раствора исследуемого вещества к эталонному раствору до тех нор, пока не установится равновесие между обоими растворами. Равновесие же наступит тогда, когда будет достигнуто равенство молярных концентраций (долей) компонентов в эталонном и исследуемом растворах. Зная молярную концентрацию вещества в эталонном растворе, определяют и равную ей молярную концентрацию раствора исследуемого вещества, и весо- вую концентрацию последнего. Исходя из этих данных вычисляют молекулярный вес исследуемого вещества. В качестве растворителя в опытах использовался толуол, а в качестве эталонного вещества — азобензол. Размер капель в приборе измерялся с помощью микроскопа. При обеспечении достаточной нрецезионности измерения размеров капель метод этот представляется перспективным. [c.81]

    Укрупнение частиц может идти двумя путями. Один из них, называемый изотермической перегонкой, заключается в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше (эффект Кельвина). В результате мелкие частицы постепенно растворяются (испаряются), а крупные растут. Второй путь, наиболее характерный и общий для дисперсных систем, представляет собой /соаг(/ля <и/о, заключающуюся в слипании (слиянии) частиц дисперсной фазы. В общем смысле под коагуляцией понимают дотерю агрегативной устойчивости дисперсной системы. Коагулящ я в разбавленных сИЖМах приводит к потере, седимеитационной устойчивости и в конечном итоге к расслоению (разделению) фаз. К процессу коагуляции относят адгезионное взаимодействие частиц дисперсной фазы с макроповерхностями. В более узком смысле коагуляцией называют слипание частиц, процесс слияния частиц получил название коалесценции. В концентрированных системах коагуляция может проявляться в образовании объемной структуры, в которой равномерно распределена дисперсионная среда. В соответствии с двумя разными результатами коагуляции различаются и методы наблюдения и фиксирования этого процесса. Укрупнение частиц ведет, нанример, к увеличению мутности раствора, уменьшению осмотического давления. Структурообразование изменяет реологические свойства системы, например, возрастает вязкость, замедляется ее течение. [c.271]

    В термодина.мически неустойчивых дисперсных системах, какими являются лиофобные системы, агрегатнвная устойчивость носит к1шетический характер, и судить о ней можно по скорости процес-соа, вызываемых избытком поверхностной энергии. При изотермической перегонке в таких системах скорость массопереноса зави- [c.272]

    Процесс изотермической перегонки может проходить практически во всех дисперсных системах с частицами, размер которых соответствует области действия эффекта Кельвина. В таких системах частицы разных размеров обладают неодинаковыми химическими потенциалами, что и создает движущую силу переноса вещества от мелких частиц к болае крупным Этот процесс ведет к постепенному нсчезиовению мелких частиц, уменьшению средней дпсперсиости (удельной поверхности) и энергии Гиббса поверхности. [c.276]

    Эмульсии — типично лиофобные дисперсные системы (за исключением самопроизвольно возникающих критических эмульсий). Потеря их агрегативной устойчивости может быть обусловлена процессами изотермической перегонки или коагуляции (коалесценции капель) и обычно сопровождается потерей седиментациоиной устойчивости (расслоение системы). В качестве меры устойчивости эмульсии можно принять время существования определенного объема эмульсии до полного ее расслоения. [c.171]

    S Под изотермической перегонкой понимают испарение мелких капель и конденсацию пара на более крупных или на плоской поверхности, что является следствием уравнения Томсона (Кельвина) RTIn(pr/pO) =2i/r, гласящем, что давление насыщенного пара рг над каплей будет тем больще, чем больше поверхностное натяжение и чем меньше радиус капли г, т,е. чем больше кривизна поверхности. [c.183]

    Срок жизни аэрозолей - до нескольких суток, а лиозолей - многие годы. Укрупнение частиц аэрозоля происходит из-за столкновений при броуновском движении и изотермической перегонке. [c.65]

    Краткие основы. Как следует из закона Рауля, н случае различных кондентраций растворов давление паров одного и того же растворителя над ними будет различным. Если же эти растворы поместить в закрытый сосуд, давление над ними будет выравниваться за счет испарения растворителя из раствора с большим давлением пара (меньшей концентрацией вещества) и конденсации в растворе с меньшим давлением пара (большей концентрацией веп(ества). Такие растворы называются нзоннестичсскпмн, а на выравнивании давления пара растворителя основан изопиестнчески11 метод определения молекулярной массы или метод изотермической перегонки (дистилляции) [3]. При установлении равновесия в системе создается равенство давлений пара над растворами и, следовательно, равенство мольных долей растворенных веществ [c.153]

    Уравнение (VI. 50) показывает, что давление насыщенного шара над каплей будет тем больше, чем больше а и чем меньше радиус капли г. Например, для капли НзО с радиусом г=10 см (сг = 73, 7=18) расчет дает р /р° = 0,01, т. е. давление увеличивается на 1%. Для капли с г = 10 см, р 1р°= 1,11. Это следствие уравнения Томсона — Кельвина позволяет предсказать на- блюдаемое явление изотермической перегонки, заключающейся в испарении наиболее малых капель и конденсации пара а более крупных и на плоской поверхности. Действительно, для атмосферы насыщенного пара, под колоколом справедливо нера-сенство  [c.71]

    Переход вещества от большего р, к меньшему в этом случае совершенно аналогичен изотермической перегонке аэрозоля через дисперсионную среду, только испарение будет представлять собой растворение вещества. Поскольку ц = р,(7 )/ Г 1п с, мы получаем уравнение, аналогичное (VI.46), где в левой части вместо отношения давлений будет стоять отношение концентраций в насыщенном растворе. Этим объясняют наблюдаемую повышенную растворимость трудно растворимых веществ (тем большую, чем меньше размер частицы), приводящую к изотермической перегонке. Для высокоднсперсных систем растворимость может превышать на порядок равновесные значения нри Я = оо. [c.73]


Смотреть страницы где упоминается термин Изотермическая перегонка: [c.257]    [c.118]    [c.508]    [c.273]    [c.276]    [c.278]    [c.288]    [c.342]    [c.125]    [c.23]    [c.390]    [c.195]   
Смотреть главы в:

Переконденсация в дисперсных системах -> Изотермическая перегонка

Техника лабораторной работы в органической химии Издание 3 -> Изотермическая перегонка


Курс коллоидной химии 1974 (1974) -- [ c.71 , c.73 , c.239 , c.286 ]

Курс коллоидной химии 1984 (1984) -- [ c.65 , c.231 , c.253 , c.279 , c.287 ]

Курс коллоидной химии 1995 (1995) -- [ c.71 , c.253 , c.278 , c.307 , c.316 ]

Коллоидная химия 1982 (1982) -- [ c.240 , c.267 ]

Экспериментальные методы в химии полимеров - часть 2 (1983) -- [ c.104 ]

Химия гемицеллюлоз (1972) -- [ c.147 ]

Аэрозоли-пыли, дымы и туманы (1972) -- [ c.107 ]

Экспериментальные методы в химии полимеров Ч.2 (1983) -- [ c.104 ]

Курс коллоидной химии (1984) -- [ c.65 , c.231 , c.253 , c.279 , c.287 ]

Установление структуры органических соединений физическими и химическими методами том 1 (1967) -- [ c.47 ]

Установление структуры органических соединений физическими и химическими методами Книга1 (1967) -- [ c.47 ]

Аэрозоли-пыли, дымы и туманы (1964) -- [ c.107 ]

Учение о коллоидах Издание 3 (1948) -- [ c.186 ]

Теоретические основы образования тумана при конденсации пара Издание 3 (1972) -- [ c.263 , c.273 ]

Физическая и коллоидная химия Издание 3 1963 (1963) -- [ c.493 ]

Микро и полимикро методы органической химии (1960) -- [ c.179 , c.181 ]

Аэрозоли - пыли, дымы и туманы Изд.2 (1972) -- [ c.107 ]




ПОИСК





Смотрите так же термины и статьи:

Влияние изотермической перегонки на уменьшение дисперсности

Высокотемпературная и изотермическая перегонка

Изотермическая перегонка (К. Т. Гринвуд)

Изотермическая перегонка f Глава 8. Электролитическая диссоциация

Изотермическая перегонка аммиака (метод Конвея)

Изотермическая перегонка в дисперсных системах

Изотермическая перегонка изопиестические условия

Изотермическая перегонка изопиестический метод

Изотермическая перегонка как метод определения молекулярного веса

Изотермическая перегонка определение

Изотермическая перегонка приборы

Молекулярный вес, методы определения изотермической перегонкой

Перегонка изотермическая низкотемпературная

Перегонка изотермическая с водяным паром фракционна

Проведение изотермической перегонки в вакууме

Проведение изотермической перегонки при атмосферном давлении



© 2025 chem21.info Реклама на сайте