Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические формулы простых и сложных веществ

    Состав молекул сложных и простых веществ изображается при помощи химических формул. [c.23]

    Этой формулой можно пользоваться для вычисления химических эквивалентов простых и сложных веществ. Например, если известно, что 1,44 г металла образуют 2,72 г оксида, то эквивалент вычисляется следующим образом. Масса металла равна 1,44 г, масса кислорода /пд равна 2,72—1,44=1,28 г, эквивалент кислорода 3q равен 8. Отсюда эквивалент металлу равен  [c.26]


    Химическая формула выражает качественный и количественный состав молекулы химического соединения. Она может быть установлена методами синтеза или анализа. Первый метод заключается в получении сложного вещества соединением простых веществ. При этом точно учитывается масса вступивших в реакцию веществ и масса полученного соединения. По второму методу разлагают определенное количество исследуемого вещества на более простые соединения, весовой состав которых известен, или на простые вещества и точно взвешивают их. Определив весовые количества элементов, входящих в состав взятого вещества, вычисляют его процентный состав и находят простейшую формулу соединения. Чтобы установить истинную (молекулярную) формулу соединения, необходимо определить его молекулярный вес. [c.37]

    Из химических формул простого или сложного вещества следует, что его молекула состоит из целого числа атомов. Например, молекула воды Н2О состоит из двух атомов водорода и одного атома кислорода. Значит, для получения определенного количества молекул или определенной массы воды необходимо, чтобы-с одним атомом кислорода в реакцию вступали два атома водорода. Однако отсчитывать или отвешивать отдельные атомы практически невозможно. [c.10]

    Химический элемент, простое вещество, сложное вещество. Знаки химических элементов и хгшические формулы. Уравнения химических реакций. [c.122]

    Химические элементы. Знаки химических элементов и химические формулы. Простое вещество, сложное вещество. Аллотропия. [c.500]

    Еще несколько слов о таком выборе. Систематические названия, особенно названия комплексных соединений, обычно достаточно сложны для понимания. Поэтому нецелесообразно использовать полностью систематизированную номенклатуру с ее длинными и сложными химическими названиями при обзорном рассмотрении общих положений для того или иного класса соединений. Лучше в этом случае выбрать выражения типа ненасыщенный спирт, производное кислоты, исходное вещество-или просто обозначить вещество как соединение (5) (если его формула или систематическое название уже были введены ранее), чем постоянно засорять текст такими названиями, как. [c.19]

    Формулы. Химическая формула сложного вещества включает в себя катион (условно электроположительную составляющую) и анион (условно электроотрицательную составляющую). Катион всегда ставится в формуле на первое место (слева), ашон — на второе. Катионы и анионы могут быть простыми и сложными и содержать металлические и неметаллические элементы. [c.7]


    Вещество. Обобщением рассмотренных понятий является пред ставление о веществе, под которым понимают вид материи, обладающей массой покоя. В химии под веществом понимается определенная совокупность атомно-молекулярных частиц в газообразном, жидком и твердом состояниях. Для веществ, независимо от степени ассоциации или агрегации атомов и молекул, используются такие понятия, как простые и сложные вещества, химические соединения и др., которые представляют стехиометрической формулой вещества с указанием его модификации или состояния. [c.6]

    Свойства простых и сложных веществ 1) состав (формула) 2) агрегатное состояние, химическая связь, строение молекул, структура кристаллов 3) способность к перестройке, насколько она выражена (с качественной и количественной стороны) 4) степени окисления, реакции с типичными окислителями и восстановителями 5) отношение к воде (растворимость, взаимодействие) 6) формулы важнейших соединений 7) применение 8) получение. [c.51]

    Ознакомление с образцами простых и сложных веществ (та же работа, опыт 1) целесообразно провести на уроке по изучению химических формул веществ. Эта работа оживит урок. Методическая ценность ее заключается в том, что учащиеся с первых же шагов в обращении с химическими формулами обращают внимание на связь их с самими веществами. [c.22]

    Часто круговой процесс используется для определения тех или иных величин, входящих в него. Ясно, что, вычислив энергию решетки по одной из формул, можно определить величину любого члена уравнения, если известны величины всех остальных. Действительно, с помощью кругового процесса впервые была определена энергия сродства к электрону. Часть членов — энергия ионизации и энергия сродства к электрону — являются атомными константами, другие — теплота диссоциации или энергия сублимации — характеризуют простые вещества, и только энергии решеток и теплоты образования относятся к сложным веществам. Таким образом, первые четыре величины могут быть заранее найдены экспериментально или вычислены для всех химических элементов. Экспериментальное определение двух последних величин для всех веществ затруднительно ввиду того, что число сложных химических соединений очень велико и с [c.176]

    Небольшой избыток катионов, замещающих Мд (0,12), может быть обусловлен тем, что часть атомов Mg, как известно, может замещать Са, а последний может занимать и восьмое катионное место в структуре, т. е. изоморфно замещать Ка. Этот небольшой избыток может и просто объясняться ошибками анализа, так как в качестве примера взят конкретный реальный анализ минерала. Как видим иа разобранного примера, по данным только химического анализа, без серьезного кристаллохимического анализа, невозможно нахождение правильной структурной формулы сложных веществ. [c.348]

    Масса молекулы любого вещества равна сумме масс атомов, образующих эту молекулу. Поэтому молекулярная масса равна сумме соответствующих атомных масс. Например, молекулярная масса серной кислоты, молекула которой содержит два атома водорода, один атом серы и четыре атома кислорода, равна 2 1,008 + 32,06 + 15,99 4 = 98,076. Следовательно, относительной молекулярной массой (или просто молекулярной массой) простого или сложного вещества называют массу его молекулы, выраженную в атомных единицах массы. Отмечалось, что одной из важнейших операций в химии является расчет по химическим формулам [c.30]

    Химический элемент (19). — 4. Простое вещество. Аллотропия (22). — 5. Сложное вещество. Моль. (23). — 6. Закон Авогадро (24) — 7. Валентность. Степень окисления. Химические формулы (26) — Упражнения к главе 1 (28). [c.1]

    Химические формулы. Химическими формулами пользуются для обозначения состава простых и сложных веществ. Химическая формула вещества показывает, из каких элементов состоит данное вещество и сколько атомов каждого элемента входит в состав его молекулы. Например, формула N2 показывает, что молекула азота состоит из двух атомов азота aS04 — в молекуле сульфата кальция содержится один атом кальция, один атом серы и четыре атома кислорода. [c.27]

    Молекулы простых и сложных веществ изображают при помощи химических формул Од, Н2О, КНд и т. п. Цифра, показывающая число атомов одного и того же элемента в молекуле вещества, называется индексом. [c.26]

    При решении задач необходимо помнить, что вещества состоят из молекул, которые, в свою очередь, состоят из атомов. Для обозначения состава молекул как простых, так и сложных веществ пользуются химическими формулами. Последние показывают, из каких элементов состоит вещество и сколько атомов каждого элемента входит в состав молекулы. Химическая формула отображает качественный и количественный состав молекулы. Например, оксид алюминия AI2O3 состоит из атомов алюминия и кислорода. Индексы 2 и 3 указывают на количественный состав соединения. [c.16]


    Весовые определения первых двух типов выполняются сравнительно просто. Но в большинстве случаев определяемая составная часть не может быть количественно выделена в чистом виде из анализируемого вещества. Например, нельзя выделить из каменного угля серу и взвесить ее. Эти случаи относятся к наиболее сложному, третьему типу весовых определений. При выполнении весовых определений третьего типа определяемую составную часть количественно превращают химическими способами в такое химическое соединение, в виде которого она люжет. быть выделена из анализируемого вещества и взвешена. Состав этого соединения должен быть строго определенным, т. е. точно выражаться химической формулой, и оно не должно содержать каких-либо посторонних примесей. Соединение, в виде которого определяемую составную часть взвешивают, обозначают термином весовая форма. [c.12]

    Химическая формула сложного вещества отражает, помимо его элементного состава, количественные соотношения между числом атомов различных элементов в молекуле, например вода — Н2О, оксид фосфора (V) — Р2О5, сахароза — С,2Н220,, и т. д. Для твердых веществ, представляющих собой молекулярные ассоциаты или агрегаты, в химических формулах учитывается простейшее сочетание их атомов, например ЫаС1. [c.11]

    Химическая наука является точной, и химики в исследовательской работе издавна широко используют математику. Это всевозможные количественные расчеты, основанные на законах стехиометрии. Например, вычисление процентного состава вещества, вычисление по уравнениям реакций необходимого количества исходных веществ для получения определенного количества заданного вещества, и наоборот, вычисление по формуле вещества количества продуктов, которое можно получить из определенного количества этого вещества, вывод формулы сложного вещества на основании данных его процентного или весового состава и атомных весов элементов, входящих в состав этого вещества, и т. д. Для этого было достаточно знание арифметики, умение с ее помощью вычислять процент числа и число по проценту, составлять и решать пропорции. И если еще в конце XIX в. Ф. Энгельс, говоря о применении математики, отмечал в химии простейшие уравнения первой степени, то уже через двадцать лет картина резко изменилась. [c.102]

    Для установления формул химического строения простейших неорганических соединений необходимо было такое же последовательное проведение принципов классической теории химического строения, какое имело место в органической химии. Но как раз эта последовательность в применении к более сложным неорганическим соединениям, известным тогда под названием молекулярных, а позднее комплексных, оказалась несостоятельной. Как мы уже говорили в первом разделе, для объяснения существования веществ, не возможных с точки зрения учения о постоянной атомности, Кекуле выдвинул гипотезу, что они представляют собой относительно лабильные соприлегания настоящих химических молекул. Однако вскоре обнаружилось, что эти соединения по всем своим физическим и химическим признакам подобны атомным соединениям , хотя и отличаются иногда некоторым своеобразием. Именно для молекулярных соединений известны были многочисленные случаи изомерии, которые требовали своего объяснения, как это было раньше в органической химии. Молекулярные соединения часто обладают настолько прочнылш связями, что на них, так же как на органические соединения, можно было распространить принцип наименьшего изменения строения во время реакций. Это делало возможным изучение их методами, вырабо-таннылш в органической химии. [c.226]

    В отличие от Купера, Лошмидт при выборе формул, кроме валентности ( поллентности по его выражению), иногда руководствовался и химическими свойствами. Однако в целом метод вывода формул Лошмидта был абстрактным, а зачастую просто необоснованным. Так, не опираясь на химические данные, Лошмидт пытался вывести формулы таких сложных веществ, как индиго, мочевая кислота и т. п. [c.59]

    Достижения квантовой химии в настоящее время используются для интерпретации многих химических реакций. Однако современное состояние этой теории таково, что за исключением простейших молекул или ионов (Н ,Н2 , Н2), расчеты могут быть проведены только приближенно, и то лишь при использовании сложного математического аппарата. Чем точнее эти расчеты, тем дальше они, в большинстве случаев, от простых химических формул из них исчезают элементы наглядности, полученные результаты трудно поддаются физической интерпретации и уже не могут быть использованы химиками в их повседневной работе по расщеплению и синтезу сложных органических веществ. Поэтому был создан ряд вспомогательных, так называемых качественных электронных теорий химической связи (Вейтц, Робинсон, Ингольд, Арндт, Полинг, Слейтер, Хюккель, Мулликен и др.), которые нашли широкое распространение и дают плодотворные результаты в построении феноменологической органической химии. Впрочем, необходимо всегда знать границы применения этих приблил<.еиных представлений, и они будут часто указываться в настоящей книге. Наконец, следует отметить, что согласно квантовой механике, невозможно создать точную и вместе с тем наглядную теорию материи, так как любая такая теория неизбежно окажется лишь oгpaничeIiнo правильной. [c.24]

    Прежде чем перейти к номенклатуре неорганических веществ, напомним, что состав вещества отображается с помощью химической формулы. Химическая формула отображает атомы каких видов и в каких количественных соотношениях составляют вещество. Соотношение количеств атомов каждого вида обозначается индексом (вообще, химическая формула - это более общее понятие, включающее брутто-формулу, струетурную, графическую и т. д., но об этом будет сказано позже, в разделе, посвященном химической связи). Так, химическая формула Н 80з отображает, что вещество содержит атомы трех химических элементов - водорода Н, серы 8, кислорода О. На один аггом серы приходится 2 атома водорода и 3 атома кислорода. Если вещество имеет молекулярное строение, то формула должна отображать количество атомов каждого вида в молекуле. Например, химическая формула показывает, что молекула кислорода состоит из двух атомов. По составу все вещества делятся на простые и сложные. [c.9]

    Химическая формула ионного вещества состоит, таким образом, из двух частей -формул катиона (положительного иона) и аниона (отрицательного иона), например формула хлорида кальция СаС12-это сочетание формул одного катиона Са (катиона кальция) и двух анионов СГ (хло-рид-ионов). Катионы и анионы могут быть простыми, или одноэлементными (Са , С1"), и сложными, или многоэлементными (НН4, СОз ), однозарядными (К , Вг ) и многозарядными (Ре , Сг , Зб , Р01 , ЗЮ ). [c.14]

    Следует отметить, что простейшие формулы в неорганической химии весьма распространены ими пользуются для обозначения многих веществ с более сложной в действительности структурой (пример PjOs) и для всех веществ, в строении которых отдельные молекулы обычно не выявляются (пример Na l), не говоря уже о веществах, для которых известен только химический состав. Простейшими формулами сражаются, как правило, и сами химические элементы (например, в уравнениях пишется S, а не Sg).  [c.33]

    Весовой состав химических соединений может б ягь выражен в процентах ]1ли в химических отношениях элементов, образующих данное вещество. Зная весорон состав сложного вещества и атомные массы составляю-ишх его э. ементов, легко установить так называемую простейшую формулу вещества, которая дает представ-лениг. о соотнои]емии между количествами отдельных атомов в молекуле. [c.33]

    Основной химический компонент магмы — кремнезем. Небольшие количества алюминия, железа, магния, кальция, натрия и калия в виде оксидов, а также вода соединяются с кремнеземом в столь сложные соединения, что их невозможно описать простыми химическими формулами. При охлаждении магмы происходит их последовательная кристаллизация, в результате которой из расплава удаляются наиболее тугоплавкие соединения, оставляя в нем более легкоплавкие вещества и воду. При этом не образуется эвтектик, как бывает при кристаллизации простых расплавов, а возникает последовательность ионных замещений или обменов, что представляет собой важнейшее отличие геохимических процессов. В качестве примера укажем, какие замещения могут происходить в минералах, называемых амфиболами, которые содержат кремнекислородную структурную единицу 8140ц. [c.444]

    Урок проводится так, что после ознакомления учащихся со смыслом химической формулы им дается задание распределить имеющиеся на столах вещества (Ь, СиО, РегОа, Nag Oa, Zn, S) на простые и сложные. Для этого на банках должны быть этикетки с названиями и обязательно формулами веществ. В последующей беседе обсул<даются вопросы 1) Почему иод, цинк и серу относят к простым веществам Что показывает индекс 2 в формуле иода 2) Почему оксиды меди, железа и карбонат натрия относят к сложным веществам  [c.22]

    В результате исследований газов и открытия газовых законов удалось определить состав молекул простых веществ, отыскать массы молекул и атомов и, в конце концов, определить химические формулы сложных веществ. Гей-Люссак, анализируя результаты экспериментов, пришел к выводу, что объемы реагирующих и образующихся в результате реакций газов относятся между собой как небольшие целые числа. Так, исходное соотношение объемов водорода н кислорода при образовании воды составляет 2 1, а получается 2 объема водяного пара. Имелись данные по реакции оксида серы (IV) с кислородом, оксида углерода (II)—угарного газа с кислородохм и некоторым другим газовым реакциям. Гей-Люссаком был сделан вывод в равных объемах различных газов при одинаковых давлениях и температуре содержится одинаковое число атомов. Если в 1 объеме одного газа (водорода) и в I объеме другого (хлора) содержалось одинаковое количество атомов (водорода и хлора), то должен был бы образоваться 1 объем газообразного продукта реакции (хлористого водорода), а образовывалось два объема. Следовательно, сделанный вывод противоречил этим экспериментальным данным. Однако идея Гей-Люссака дала возможность Амедео Авогадро высказать (1811) гипотезу, известную сейчас как закон Авогадро. [c.13]

    Иордис, исходя из способов приготовления различных золей, указывает, что в результате химического взаимодействия эти способы приводят к образованию нерастворимых соединений, и если при этом получаются устойчивые золи, то нужно предполагать, что или продукты реакции обладают какими-то новыми и странными свойствами, или уравнения реакций являются лишь грубым выражением процесса, в действительности протекающего более сложно, и требуют поэтому соответствующих поправок. Иордис подвергает сомнению правильность обычных химических уравнений и доказывает опытом, что образующиеся осадки никогда не имеют простого химического состава, а всегда содержат примеси исходных веществ он показал, что золь 5Юг всегда содержит минимальные примеси С1 и Na, причем эти примеси не случайны и не безразличны для коллоидной системы, а напротив, удаление этих примесей диализом ведет к осаждению золя, тогда как увеличение их количества повышает устойчивость золя. Состав коллоидной частицы, таким образом, не может быть дан обычной, простой химической формулой. Частица имеет сложный состав и построена по типу химических комплексных соединений. [c.191]

    Как уже говорилось, Бертло не признавал теорию химического строения. В своей практической работе он пользовался теорией эквивалентов и был приверженцем унитарной теории Лорана и Жерара. Следуя воззрениям этих химиков, он в принципе отвергал возможность установления строения сложных веществ. Изображая формулами состав соединений, Бертло пользуется приемом замещения, переходя от простейших соединений к более сложным, например, метан он изображает СН4, а этан — СНгССНд) и т. д. Несмотря на такой прием, который может быть охарактеризован как отсталый, Бертло выполнил несколько выдающихся синтезов и высказывал претензии на роль основателя синтетической химии .  [c.329]


Смотреть страницы где упоминается термин Химические формулы простых и сложных веществ: [c.9]    [c.56]    [c.22]    [c.45]    [c.52]    [c.76]    [c.198]    [c.16]    [c.59]   
Справочник по общей и неорганической химии (1997) -- [ c.89 ]




ПОИСК





Смотрите так же термины и статьи:

Вещества простые

Вещества сложные

Формулы веществ

Формулы простейшие

Формулы химические

Формулы химические простейшие

Химический ое не ная химическая вещества



© 2025 chem21.info Реклама на сайте