Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Излучение единицы измер ния

    Коэффициент поглощения г называют молярным, если концентрация веш,ества выражена в моль/л. Он представляет собой оптическую плотность 1 М раствора при длине кюветы 1 см. Величина 8 измеряется в л/(моль-см), но принято приводить значение 8 без указания единиц измерения. Если концентрацию вещества выражают в процентах, то вместо 8 используют удельный коэффициент поглощения, численно равный оптической плотности 1%-ного раствора при /=1 см, и обозначают E u Коэффициент поглощения обычно используют для сравнительной оценки чувствительности фотометрических реакций и методик чем выше значение 8, тем меньшую концентрацию вещества можно определить. Постоянство значений г при разных концентрациях вещества обычно свидетельствует о соблюдении закона поглощения в определяемом интервале концентраций, т. е. е не зависит от концентрации и длины кюветы и характеризует степень поглощения электромагнитного излучения. Метод анализа называют фотометрическим, когда измеряют степень поглощения веществом излучения сравнительно широкого участка спектра, выделенного с помощью светофильтров, с помощью фотоэлектроколориметров. [c.23]


    Интенсивность радиоактивного излучения образца измеряется в единицах, называемых кюри. Один кюри соотве ствует 3,7-10 ° распадов в секунду. Количество энергии, поглощаемое биологическими тканями при их облучении, измеряется в радах один рад соответствует поглощению 1-10 Дж энергии на килограмм ткани. Более удобно измерять биологическое поражение при поглощении энергии радиоактивного излучения в бэрах. Население высокоразвитых стран облучается не только естественными источниками излучения, но приблизительно в той же мере и источниками, привносимыми цивилизацией. Влияние длительного воздействия на [c.274]

    В каких единицах измеряют ионизирующее действие радиоактивного излучения Сравнить ионизирующее действие а-, р- и у-излучений. [c.182]

    В каких единицах измеряют ионизирующее действие радиоактивного излучения Каковы правила техники безопасности при работе с радиоактивными веществами  [c.226]

    Выход излучения светодиода измеряют в световых единицах — люменах или 1 кандела на 1 м"2[(1 кд. м ) = 1 нит], отнесенных к единице мощности (Вт). Величина выхода обычно имеет размерность — лм/Вт (светоотдача) или лм/А и кд -м" 7(А -СМ" ) отношение яркости свечения к плотности тока позволяет сравнивать между собой диоды различной формы и размера. [c.15]

    Величина дозы зависит не только от активности, природы излучения и его энергетической (спектральной) характеристики, но н от химического состава среды, поглощающей излучение. Доза измеряется энергией, поглощенной веществом, и измеряется в эргах на грамм или в радах (1 рад= 00 эрг/г) в случае рентгеновских и у-лучей вводится понятие дозы излучения — рентген. При дозе р в г воздуха поглош.ается энергия в -88 эрг (т, е. 1 о в этом случае равен 0,88 рад), и при этом в одном кубическом сантиметре воздуха при стандартных условиях образуется столько ионов, что они несут одну электростатическую единицу количества электричества каждого знака (2,08- Ю пар ионов). [c.57]

    Электромагнитный спектр охватывает огромную область частот, и спектроскописты, работающие в различных областях спектра, сочли удобным ввести свои собственные единицы измерения. Эти единицы выбирались обычно таким образом, чтобы числа имели разумные величины и не приходилось включать число 10 в высоких степенях. В рентгеновской, ультрафиолетовой и видимой областях спектроскописты пользуются длиной волны излучения и измеряют ее в ангстремах (1А= 10 с>г). В ближней и дальней инфракрасной областях для измерения длины волны используют микроны (1ц = 10 см). Однако в инфракрасной области часто оказывается удобнее иметь дело с волновым числом, т. е. числом длин волн в одном сантиметре. Волновое число равно частному от деления истинной частоты на скорость света, т. е. [c.45]


    В зависимости от спектрального состава спектральной чувствительности приемника излучения энергию излучения можно измерять по двум системам единиц энергетической и светотехнической. В инфракрасной области спектра пользуются энергетической системой единиц. Светотехническая система используется только в видимой области спектра, так как она базируется главным образом на световых ощущениях человеческого глаза. [c.13]

    Интенсивностью излучения тела д называется количество тепловой энергии, излучаемой в единицу времени с единицы поверхности тела. Интенсивность излучения обычно измеряется в ккал/м ч. [c.39]

    Величина е, характеризующая способность вещества к поглощению света определенной длины волны, называется молярным коэффициентом экстинкции. Если длина измеряется в см, а концентрация — в молях на литр, то единицей измерений для коэффициента экстинкции является л/моль см. Поскольку число молей в литре равно числу ммолей в мл, т. е. в 1 см , то можно ту же единицу записать в виде см /ммоль. Нетрудно убедиться, что молярный коэффициент экстинкции есть число, показывающее, на какой площади нужно разместить 1 ммоль (6,02 10 молекул) вещества, чтобы при прохождении излучения через такую поверхность интенсивность излучения упала бы в 10 раз. [c.148]

    Поглощенная доза ионизирующего излучения — это энергия, которая передается излучением единице массы облучаемого вещества. Поглощенную дозу измеряют в радах. 1 рад соответствует 100 эрг поглощенной энергии в 1 г вещества. Излучение, сообщающее дозу 1 рад воде, передает воздуху дозу 0,9 рад. Большинство органических веществ по своей поглощающей способности близки к воде и для них этой разницей обычно пренебрегают. [c.15]

    Поскольку при малой плотности излучения p(v ) мощность индуцированных переходов мала, величина практически совпадает с полной мощностью излучения единицы объема которая может быть измерена. Таким образом, по соотношению (1) измеряется произведение величины Для [c.398]

    Поглощенная доза излучения, т. е. энергия излучения, поглощенная единицей массы облучаемого вещества, измеряется в радах, I рад (rad общепринятого сокращения русскими буквами нет) соответствует поглощенной дозе излучения, равной 100 эрг на 1 е облучаемого вещества. [c.46]

    Поглощенная доза излучения измеряется в единицах грей (Гр) или рад (рад), мощность поглощенной дозы — Гр/с или рад/с, экспозиционная доза излучения — в Ки/кг или рентген (Р), мощность зоны рентгеновского и " -излучения — в Ки/(кг- с) или Р/с, интенсивность ионизирующего излучения в Вт/м или МэВ/( м ). [c.150]

    Радиоактивный распад с испусканием р- и а-частиц приводит к изменению заряда ядра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р -распада атомный номер увеличивается на единицу, при р+-распаде уменьшается на единицу. В обоих случаях массовое число не изменяется. В результате а-распада атомный номер уменьшается на два, а массовое число—на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а-, р- и у-излучения обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электрон-вольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими электрон-вольтами энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими электрон-вольтами или небольшим числом десятков электрон-вольт. Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому электрическая проводимость газа становится на какой-то очень короткий промежуток времени больше, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку проводимости). Если число распадающихся атомных ядер не превышает нескольких тысяч в секунду, то каждая вспышка может быть зарегистрирована отдельно (проводимость, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно сосчитать число актов радиоактивного распада. Это можно сделать и другим способом, поместив радиоактивное вещество в специальный раствор, содержащий какой-либо сцинтиллятор — вещество, молекулы которого под действием р-частиц начинают испускать свет. Естественно, что каждая р-частица может вызвать свечение не очень большого числа молекул сцинтиллятора, однако современные высокочувствительные фотоумножители позволяют регистрировать такие слабые вспышки, и по числу вспышек света можно определить число распавшихся радиоактивных атомов. [c.27]

    При попадании на фотокатод квантов света появляются электроны, которые устремляются к положительно заряженному аноду, и в цепи появляется электрический ток, создающий на сопротивлении Н разность потенциалов, которую можно измерить различными средствами электроники. Количество образовавшихся электронов пропорционально количеству квантов света, т. е. количеству падающего излучения. Поскольку электрический ток — это число электронов в единицу времени, то он пропорционален числу падающих квантов света в единицу времени, т. е. мощности излучения. Эта характеристика отличает данный метод от фотографического, где важна суммарная энергия, достигшая фотоэмульсии. [c.26]


    Мы уже знакомы с различными типами электромагнитного излучения свет — видимый, ультрафиолетовый, инфракрасный, рентгеновские лучи и радиоволны различной длины. Это только часть широкого спектра от гамма-лучей, длины волн которых измеряются долями единиц Ангстрема, до радиоволн, длины волн которых измеряются в метрах и даже километрах. Все эти волны имеют одинаковую скорость распространения 3 10 см/с. Их частота связана с длиной волны следующим соотношением  [c.399]

    Для проведения качественного и количественного анализа излучение источника света, разложенное в спектр в спектральном аппарате, нужно зарегистрировать. При количественном анализе, кроме того, необходимо измерить интенсивность спектральных линий. Обе эти операции проводят последовательно или одновременно. Например, при фотографическом методе сначала регистрируют спектр, а затем измеряют интенсивность спектральных линий по их почернению на фотографической пластинке. При фотоэлектрическом методе регистрация спектра и измерение интенсивности являются обычно одной операцией. Измерение интенсивности спектральных линий и полос (фотометрия) при количественном анализе всегда носит относительный характер. Никогда не измеряют абсолютные значения светового потока, составляющего спектральную линию в люменах, ваттах или других абсолютных единицах, а определяют интенсивность одной линии по отношению к другой. [c.152]

    Идея многоквантовых процессов на первый взгляд кажется противоречащей основам квантовой теории. Эйнштейн показал, что наблюдающийся фотоэлектрический эффект согласуется с представлением об излучении как о потоке фотонов, чья энергия определена частотой или длиной волны интенсивность излучения измеряется числом фотонов (в единицу времени), но не влияет на энергию каждого отдельного фотона. Подобные рассуждения применимы и к фотохимическим изменениям. Приведенный в разд. 1.2 закон Штарка — Эйнштейна служил следующим подтверждением идей квантования. Только один фотон необходимо поглотить частице, чтобы вызвать ее различные фотохимические превращения. Следовательно, фотоны с энергией меньшей, чем необходимо для какого-то определенного превращения, например диссоциации, не могут быть эффективны, как бы ни была высока их интенсивность. Очевидно, что если частота излучения не соответствует разнице между двумя энергетическими уровнями молекулы или атома, то поглощение и, следовательно, реакция не могут произойти. Однако в последнее время выполнено большое число экспериментов, [c.73]

    Для измерения массовой доли элемента в микрообъеме необходимо измерить полную массу образца в единице объема. Интенсивность непрерывного излучения (обычно измеряемая спектрометром с дисперсией по энергии) можно использовать для измерения общей массы образца в единице объема и массовую долю элемента можно определить по следующей формуле  [c.81]

    В том случае, если люминофор излучает в видимой области спектра, интенсивность излучения может быть измерена в единицах яркости .  [c.16]

    Излучение можно измерять как дозу радиации, поглощенную организмом. Доза радиации в СИ выражается в греях (Гр). 1 Гр отвечает поглощению излучения с энергией 1 Дж одним килограммом вещества. Другая единица измерения дозы радиации - рад 1 Гр = 100 рад. Для того чтобы учесть биологическую эффективность излучения разных типов, используют понятие эквивалентной дозы, которую измеряют в бэрах. Мощность дозы излучения - это отношение приращения дозы к интервалу времени, за который произошло это приращение. Единицы измерения мощности - Гр/с, рад/с и т. п. - Прим. С. С. Бердоносова. [c.352]

    Градуировку спектрометра по эффективности проводят следующим образом. В строго фиксированной геометрии измеряют гамма-спектр для каждого источника из набора ОСГИ. В каждом спектре определяют площадь пика полного поглощения для тех энергий гамма-излучения Ео, для которых в свидетельстве на ОСГИ приведен выход гамма-квантов. Все площади относят к единице времени. Для каждой -й гамма-линии с энергией o рассчитывают эффективность регистрации бо равную отношению плошали пика полного поглощения к числу гамма-квантов с энергией о,. испускаемых данным источником в 1 с. Число гамма-квантов должно быть взято из свидетельства на ОСГИ и пересчитано по формуле (4) на дату проведения градуировки спектрометра. По полученным [c.67]

    Поглощенная тканями организма доза излучения зависит ot дологической активности излучения и измеряется с помошью рад от англ relation absorbed dose), т е как поглощенная доза иэлу-юия, приходящаяся на определенное количество облученного ма-риала, причем 1 рад соответствует энергии 0,01 Дж/кг Как пра-ило, сейчас вместо рад используют другую единицу — грей р) Между Этими единицами действует следующее соотноше-е 1 Гр = 1 Дж/кг = 100 рад [c.207]

    Длины волн рентгеновского излучения обычно измеряют в единицах икс (X) или килоикс кХ), которые имеют следующую связь с метрической единицей  [c.797]

    Так как скорость света в вакууме Свак постоянна, частоты обратно иро-порциональны длинам волн излучения в вакууме. В инфракрасной области выражают частоты не в обратных секундах, а в Свак Р з больших единицах — обратных сантиметрах (в последнее время для этой единицы предложено название кайзер и обозначение К.) Длины волн измеряют, как правило, в микронах, и, следовательно, частота равна 1 [c.485]

    Гониометрические развертки подтвердили гексагональную симметрию кристаллов (класс Лауэ 6//н). Систематические погасания рефлексов приводят к двум возможным пространственным группам Р63 и Р6з/т. Параметры элементарной ячейки, а = 17.375 + +0.005, с=15.185+0.005 А плотность измеренная 1.4 г/см вычисленная на 6 формульных единиц [Ni(en)з]-81305-8.7Н2О 1.3 г/см . Измерения интенсивностей выполнены на монокристаль-ном дифрактометре со сцинтилляционным счетчиком по схеме перпендикулярного пучка методом неподвижный счетчик—вращающийся кристалл . Использовалось монохроматизированпое отражением от кристалла-монохроматора — Мо-Л -излучение. Были измерены 920 ненулевых неэквивалентных отражений [c.63]

    В зависимости от области спектра длину волны выражают в разных единицах так, длину волны рентгеновского и дальнего ультрафиолетового излучения удобно измерять в ангстремах, А (Ю- м) для видимой и ультрафиолетовой "областей используют нанометр (нм), или миллимикрометр, ммкм (10" м) для инфракрасной области — микрометр, мкм (10" м). [c.98]

    Изменения, происходящие в облучаемом объекте под воздействием различного рода излучений, зависят от величины энергии, поглощенной облучаемым объектом. Количество энергии любого вида излучения, поглощенной 1 г вещества, называется поглощенной дозой излучения, которая измеряется в радах-, рад равен 100 эрг энергии, поглощенной 1 г любого вещества (независимо от вида ионизирующей радиации). Производными единицами являются миллирад мрад) и микрорад (мкрад). [c.245]

    Дозу энергии излучения обычно измеряют в греях (Гр) 1 Гр равен дозе энергии, поглощаемой при передаче I Дж энергии ионизирующей радиации веществу массой 1 кг в определенных постоянных условиях. Она соответствует 100 радам (в старых единицах) и, как правило, 100 рентгенам (Р), однако последняя единица определяется через число ионов, возникающих при ионизации Дру1ая важная мера радиации это эквивалентная доза, измеряющая (вредный) биологический эффект определенной дозы излучения. Она вычисляется путем умножения энергетической дозы на множитель, изменяющийся при изменении вида излучения в зависимости от особенностей процесса выделения энергии например, при плотной ионизирующей радиации он больще, чем при рассеянной Она измеряется в Дж/кг (Дж джоуль). Старой единицей ее измерения является рэм (1 рэм = /юо Д /к1 ) В этой книге часто цитируются данные, приводящиеся в старых работах. При этом мы используем новую систему единиц, принимая, что 1 Гр = 100 мГр = 100 рад = 100 Р. Возможно, это не всегда будет удовлетворять требованиям спе-циалисгов по радиационной физике однако для целей данной книги это, вероятно, вполне приемлемо. [c.224]

    Для количественной оценки действия ионизирующего излучения н вещество используют ряд специальных характеристик [18, 20]. Погло щенной дозой называют энергию ионизирующего излучения, погло щенного единицей массы облученного вещества. Единицей поглощен ной дозы в системе СИ является грэй, а в практической - рад, равны 100 эргам поглощенной энергии на 1 г, или 6,24-10 3 эВ/см . Рентгеново кое и у-излучение оценивают экспозиционной дозой, единицей кото рой в СИ служит Кл/кг, а на практике используют рентген (Р). Доза излучения, отнесенная к единице времени, называется мощностью поглощенной дозы и измеряется в Гр/с-Дж/(кг-с), рад/с, эВ/с, соответственно для рентгеновского и у -излучений - Кл/(кг-с), Р/с. Связь между поглощенной дозой и мощностью дозы дается соотношением [c.109]

    Рассмотрим это положение подробнее. В неподвижном слое катализатора перенос тепла осуществляется за счет теплопроводности зерен, излучения от зерен и конвекции газа, протекающего между зернами. Теплопроводность слоя зерен катализатора обычно невелика вследствие их пористости и малой поверхности контакта зерен друг с другом, излучение существенно лишь при 500" С и выше, конвекция газа по сечению слоя имеет большое значение лишь при сильном радиальном перемешивании газа, т. е. не в условиях неподвижного слод. Поэтому значения эффективного коэффициента теплопроводности Я,э неподвижного слоя катализаторов, слагающиеся из трех вышеназванных составляющих, весьма невелики и составляют для окисных и солевых катализаторов единицы ккал м-ч-град). Для пористых металлических зерен измеряется десятками, а для чистых металлов (сеток) сотнями ккал (м-ч-град). [c.94]

    Лоза рентгеновского н у-излучелий измеряется в рентгенах или в долях рентгена. Рентген (р. г) определяется как такая доза рентгеновского или -(-излучения, при которой сопряженная с излучением корпускулярная эмиссия образует в 0.001293 г воздуха (I С.и сухого воздуха при О С и 760 мм рт. ст.] иопы, несущие заряд в 1 электродтатическую единицу количества электричества каждого знака. Доза в 1 р соответствует образованию в 0,001293 г воздуха 2,08 10 пар однозарядных ионов. Согласно ГОСТ 8848 — 5S, применение рентгена в качестве единицы дозы допускается для измерения излучений с эн<фгией квантов до 3 М )в. [c.46]

    Единицей измерения телесного угла является стерадиан, подобно тому, как угол на плоскости измеряется в радианах. Интенсивность /+ представляет собой мощность излучения, при <одящуюся на единицу поверхности и на [c.451]

    Радиометры предназначены для измерения активности радиоактивных веществ, плотности потока ионизирующего излучения, удельной объемной и поверхностн ой активности. Их измеряют в следующих единицах беккерель (Бк) или кюри (Ки) — для определения активности частицы/(м2-с) или частицы/(см2- с)—для определения плотности потоков излучений Бк/м или Ки/см Бк/м или Ки/см Бк/кг или Ки/г — соответственно для измерения объемной поверхностной и массовой активности. [c.149]

    Радиоактивный распад с испусканием Р- и а-частиц приводит к изменению заряда яДра, т. е. к превращению исходного ядра в ядро другого элемента. В случае Р"-распада атомный номер увеличивается на единицу, при р+-распаде — уменьшается на единицу. В обоих случаях массовое число не изменяется, В результате а-распада атомный номер уменьшается на два, а массовое число — на четыре. Часто а- и р-распад ядер сопровождается электромагнитным излучением очень высокой энергии, которое называют у-излучением. Наличие 7-излучения свидетельствует, что первоначально в результате радиоактивного распада образуется ядро в возбужденном состоянии, которое переходит в основное состояние с испусканием у-квантов. а- и Р-Частицы, так же как и 7-излучение, обладают высокой энергией, измеряемой сотнями тысяч и даже миллионами электронвольт. Для сравнения можно сказать, что энергия разрыва одной химической связи измеряется несколькими эВ энергия, необходимая для удаления одного электрона из окружающей атом электронной оболочки, измеряется несколькими эВ или небольшим числом десятков эВ, Поэтому каждая а- или р-частица или у-квант могут на своем пути произвести вполне ощутимые действия. Так, в газе, ударяясь о встречные атомы или молекулы, они способны выбивать из них электроны и превращать их в ионы. Поэтому газ становится на какой-то очень короткий промежуток времени более электропроводным, и если частица пролетела между электродами, то удается зарегистрировать прохождение тока ( вспышку электропроводности). Если число распадающихся атомных ядер не превышает несколько тысяч в секунду, то каждая вспышкй может быть зарегистрирована отдельно (электропроводность, возникшая в результате пролета одной частицы успеет упасть до малых значений перед пролетом следующей частицы) и тем самым можно считать число актов радиоактивного распада. Это [c.23]

    Ионизирующая способность у-, а также рентгеновского излучения измеряется единицами, называемыми рентгенами (р) — доза излучения, которая в 1 см сухого воздуха при нормальных условиях (т. е. в 1,293 10 г воздуха) производит количество ионов, суммарный заряд которых равен одной единице СГСЭ. Нетрудно подсчитать, зная заряд электрона, что доза в 1 р создает 2,08 10 пар ионов. Часто применяются доли рентгена миллирентген (мр) и микрорентген (мкр). [c.125]

    Излучение принято характеризовать либо длиной вЬлны, либо вол-нйвым числом р, равным числу длин волн, укладывающихся на единицу длины, которое измеряется в обратных сантиметрах. Электромагнитный спектр излучения разделяется обычно на области ультрафиолетовую > 25000 см ), видимую (15000—25000 см ) и инфракрасную (1000—10000 см" ). Обычно электронные переходы вызываются ультрафиолетовым (УФ) излучением. [c.82]

    Более информативна с точки зрения радиационной безопасности поглощенная доза - отношение поглощенной энергии к массе поглощающего вещества. В системе единиц СИ она измеряется в греях (Гр), 1 Гр соответствует поглощению 1 Дж энергии 1 кг вещества. Внесистемной единицей поглощенной дозы является рад ( radiation absorbed doze ), равный 10 Гр. Облучение человеческого тела дозой в 4,5 Гр (460 рад) примерно в 50 % случаев может быть смертельным. Различные типы излучения оказывают различное биологическое действие. [c.390]


Смотреть страницы где упоминается термин Излучение единицы измер ния: [c.157]    [c.158]    [c.15]    [c.6]    [c.381]    [c.334]    [c.486]    [c.339]    [c.162]    [c.81]   
Химические реакции полимеров том 2 (1967) -- [ c.2 , c.98 ]




ПОИСК







© 2024 chem21.info Реклама на сайте