Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Вариационное исчисление и принцип максимума

    В настоящее время большинство аналитических методов решения экстремальных задач обобщены и сведены Дубовицким и Милютиным в одну теорему, которую можно назвать основной теоремой математического программирования. Из нее, как следствия, вытекают все основные теоремы вариационного исчисления, принципа максимума, линейного и нелинейного программирования. [c.130]


    В задачах вариационного исчисления (стр. 202) недостаток граничных условий восполнялся условиями трансверсальности, число которых равнялось числу недостающих граничных условий для уравнения Эйлера. Аналогичные условия трансверсальности можно иолу ить и при использовании принципа максимума. Рассмотрим [c.339]

    В книге в доступной форме изложены основы методов оптимизации химических производств (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное, нелинейное и геометрическое программирование). Сформулированы общие положения, касающиеся выбора критериев оптимальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи оптимизации конкретных процессов. Второе издание (первое издание выпущено в 1969 г.) дополнено изложением основ геометрического программирования, а также примерами, иллюстрирующими практическую реализацию методов нелинейного программирования. [c.4]

    В простейших случаях, когда целевая функция задана аналитически, используют классические методы нахождения экстремума методами дифференциального исчисления. При наличии ограничений типа равенств, наложенных на независимые переменные, используют метод множителей Лагранжа. В более сложных случаях, когда критерий оптимальности представлен в виде функционалов, используют методы вариационного исчисления-, при оптимизации процессов, описываемых системами дифференциальных уравнений, применяют принцип максимума Понтрягина. Используют также динамическое, линейное программирование и другие методы оптимизации. [c.38]

    Расчеты оптимальных условий проводятся математическими методами (вариационное исчисление, динамическое программирование, принцип максимума Понтрягина) или часто различными методами направленного поиска [c.69]

    Для решения задач оптимизации химико-технологических процессов обычно используют методы нелинейного программирования (поисковые методы) [1, 3] и методы теории оптимального управления вариационного исчисления [4], динамического программирования 15], принципа максимума Понтрягина [6], дискретного принципа максимума 17]. Наибольшее распространение получили поисковые методы как наиболее гибкие и универсальные. Эти методы находят также широкое применение при решении задач идентификации (определение некоторых коэффициентов уравнений, представляющих собой математическую модель исследуемого процесса). Кроме того, поисковые методы могут быть эффективно использованы при синтезе оптимальной структуры химико-технологических систем, который в общем случае представляет собой задачу дискретно-непрерывного программирования в частности, они могут быть использованы при получении нижних оценок в методе ветвей и границ (см. гл. VI). [c.14]


    В девятой главе рассмотрены методы оптимизации, предлагаемые для расчета ступенчатых и непрерывных систем. Здесь под ступенчатыми понимаются многостадийные процессы, происходящие, например, в последовательности реакторов и т. п. Для рещения задачи оптимизации таких систем предлагаются методы вариационного исчисления, принципа максимума Понтрягина, динамического программирования. После описания этих методов рассматривается возможность их применения для различных задач. Изложены принципы решения нестационарных задач. В заключение проводится сравнение методов оптимизации, описанных в четвертой и девятой главах, и даются некоторые рекомендации по их использованию. [c.8]

    Таким образом, даже тогда, когда уравнение Эйлера существует и можно найти его общий интеграл, зто еще не означает, что получено решение исходной оптимальной задачи. Лишь относительно узкий круг задач с достаточно гладкими решениями и хорошими ограничениями позволяет успешно применять методы вариационного исчисления. В остальных же случаях более эффективными оказываются такие методы, как динамическое программирование и принцип максимума. [c.243]

    Применение классических методов математического анализа и вариационного исчисления для оптимизации химических реакторов наталкивалось на значительные затруднения, связанные с наличием в реальных задачах ограничений на фазовые и управляющие переменные. Аналогичные трудности возникали при постановке оптимальных задач в других областях науки и техники. Это способствовало развитию таких мощных методов, как метод динамического программирования принцип максимума методы нелинейного программирования 2о-22  [c.10]

    Следующий важный этап оптимизации химических реакторов — выбор метода расчета оптимальных режимов. Широкое распространение получили как классические методы математического анализа и вариационного исчисления, так и новые методы — принцип максимума динамическое и нелинейное программирование. В системе автоматической оптимизации время расчета оптимальных режимов Тр должно быть существенно меньше среднего времени между двумя последовательными возмущениями, т. е. [c.21]

    В настоящее время для численного поиска оптимального управления объектами, описываемыми дифференциальными уравнениями, наибольшее применение находят прямые методы вариационного исчисления [I] и принцип максимума Понтрягина [2].  [c.115]

    Понятие сопряженного процесса является обобщением понятия сопряженной системы, применяемой в вариационном исчислении для формулировки необходимых условий оптимальности [37] (в принципе максимума Понтрягина сопряженную систему использовали применительно к задаче оптимального управления [19]). С появлением вычислительной техники и началом бурного развития методов численного решения задач оптимизации было обращено внимание на другой аспект возможного использования сопряженной системы, а именно, на удобство получения с ее помощью градиента оптимизируемой величины. [c.139]

    Основные математические методы оптимизации (классический математический анализ, вариационное исчисление, линейное и динамическое программирование, принцип максимума и др.) описываются в специальной литературе .  [c.20]

    В настоящее время для решения оптимальных задач применяют в основном следующие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) линейное программирование 7) нелинейное программирование. В последнее время разработан и успешно применяется для решения определенного класса задач метод геометрического программирования (см. главу X). [c.29]

    В задачах вариационного исчисления (стр. 214) недостаток граничных условий восполняется условиями трансверсальности, число которых равнялось числу недостающих граничных условий Для уравнения Эйлера. Аналогичные условия трансверсальности можно получить и при использовании принципа максимума. Рассмотрим порядок вывода этих условий на примере задачи о быстродействии для процесса, описываемого системой трех уравнений, что соответствует изображению фазовой траектории в трехмерном пространстве переменных х, х2 и х3. [c.330]

    Таким образом, показано, что результаты, получаемые при применении метода множителей Лагранжа, вариационного исчисления и динамического программирования, можно представить в форме условий принципа максимума. Вместе с тем, соотношения принципа максимума, найденные независимо от этих методов, имеют более общий характер и позволяют решать задачи, которые не могут быть сформулированы в терминах этих методов или требуют специального обоснования возможности их применения. [c.404]

    Для решения задач первой группы, т.> е. когда функция выгоды зависит только от состояния объекта, используются методы математического программирования, в то время как для задач второй группы применяются методы вариационного исчисления, динамическое программирование, а такн е принцип максимума (стр. 163)-. [c.73]


    Большинство практических задач оптимизации не может быть решено методами классического дифференциального и вариационного исчислений, В последние годы получили развитие новые методы, сильно расширившие круг решаемых экстремальных задач. К ним относятся линейное, нелинейное и динамическое программирование и принцип максимума Понтрягина. [c.129]

    Особая группа задач оптимизации — задачи, в которых критерий оптимальности представляет собой не функцию, а функционал [см. раздел 13, обсуждение формул (13.26) — (13.27)]. Так бывает, если критерий зависит не от значений каких-то факторов, а от характера непрерывного изменения этих факторов например, если протекание переходного процесса определяется непрерывным изменением управляющего воздействия во времени, или если состав смеси на выходе из аппарата идеального вытеснения определяется профилем температуры по всей его длине. В таких задачах используют вариационные методы (вариационное исчисление, динамическое программирование, принцип максимума). [c.252]

    Задача об ОТП впервые была решена Билу и Амундсоном [7] для частного случая консекутивной реакции методами классического вариационного исчисления. Классическая процедура решения, однако, не является математически строгой, так как вследствие наличия технологических пределов варьирования температуры максимум функционала в аналитическом смысле может нигде не достигаться, а оптимальная температура Т (т) по крайней мере в некоторых сечениях реактора совпадать с предельно допустимой температурой Т. Вывод уравнений ОТП классическим методом к тому же весьма труден. Уже в последние годы были разработаны две новые формализации вариационного исчисления, давшие строгую процедуру разыскания экстремума функционала в ограниченной области варьирования. Один из этих взаимно эквивалентных методов основан на принципе оптимальности Веллмана (см. п. 1), а другой — на принципе максимума Понтрягина [2]. [c.243]

    Мы рассмотрели несколько методов для решения одной и той же задачи—максимизации или минимизации функционала. В частности, были описаны методы динамического программирования и методы вариационного исчисления, связанные с принципом максимума Понтрягина. Как и следовало ожидать, между различными методами решения этой задачи существует тесная связь. [c.320]

    Если уравнение (VI. 10) не имеет решений в области О <С т классический метод вариационного исчисления не дает решения задачи распределения. В этом случае для решения задачи (VI. 2— 1.3) воспользуемся принципом максимума для закрепленного времени [c.170]

    Решение этой задачи составляет содержание математической теории оптимизации. Часть математических методов оптимизации — в первую очередь, дифференциальное исчисление и вариационное исчисление — возникли на классическом этапе развития математики. В середине XX века создан целый ряд новых методов линейное программирование, динамическое программирование, нелинейное программирование, принцип максимума. С ними можно познакомиться по работам [23—26]. [c.182]

    В случае, когда функция выгоды зависит только от состояния объекта, для решения задач используются методы математического программирования, в то время как для задач, в которых важна форма пути, применяются методы вариационного исчисления, динамическое программирование, а также принцип максимума (см. гл. VI). [c.142]

    Для решения первых четырех задач были разработаны методы, основанные на использовании численных методов нелинейного программирования (поисковых методов) [И, 12] и методов теории оптимального управления — вариационного исчисления [15], динамического программирования [16], принципа максимума Понт-рягина [17], дискретного принципа максимума [18]. Пятая задача принципиально отличается от первых трех тем, что в ней наряду с непрерывными искомыми переменными имеются целочисленные переменные. Отсюда для ее решения необходимо применять методы [c.23]

    В книге в доступной форме изложены основы методом оптимизации (классический анализ, вариационное исчисление, принцип максимума, динамическое, линейное и нелинейное программирование) с иллюстрацией их на объектах химической технологии. Сформулированы общие положения, касающиеся выбора критериев о[1ти-мальности химико-технологических процессов, и приведены их математические модели. Рассмотрены задачи, связанные с оптимизацией конкретных процессов. [c.4]

    В настоян ее время для решения оптимальных задач применяют в основном следую1цие методы 1) методы исследования функций классического анализа 2) методы, основанные на использовании неопределенных множителей Лагранжа 3) вариационное исчисление 4) динамическое программирование 5) принцип максимума 6) лгшеГнше программирование 7) нелинейное программирование. [c.29]

    В настоящее время нет общего метода решения задач циклической оптимизации. Все используемые алгоритмы основаны на классических понятиях вариации функционала и модифицированного принципа максимума. Наиболее общим и обоснованным является градиентный метод, основанный на вариационном исчислении. Суть этого метода была изложена еще в работе [7]. Задается фиксированная продолжательность периода с и определяется (численно) соответствующее ему оптимальное управление, затем задается другое значение периода и определяется соответствующее ему другое оптимальное управление. После этого сравнивают значения целевых функционалов и с помощью направленного поиска определяются значение оптимального периода. Конечно, такой подход требует больших затрат машинного времени. В работе [72] разработан другой численный алгоритм. Здесь не использовались условия цикличности. Оптимальное управление определялось на достаточно большом отрезке времени с произвольными начальными условиями. [c.292]

    Функция Н впервые введена в классическом вариационном исчислении (см., например, [11]) и называется функцией Гамильтона или гамильтонианом. Условие максимума гамильтониана может быть получено и классическими вариационными методами, однако, в отличие от них, метод Веллмана позволяет сделать важный вывод оптимальному решению соответствует наивысшее значение гамиль го-ниана, достижимое в заданной ограниченной области допустимых температур, причем это значение не обязательно должно соответствовать аналитическому максимуму. Другой метод, позволяюпщй дать более строгий вывод условий оптимальности в ограниченной области, предложен Понтрягиным [121. Принцип максимума Понтрягина [c.371]

    Решение может быть получено с помощью методов вариационного исчисления или на основе принципа максимума Л. С. Понтря-гина. В решении учитывается, что при управлении с обратной связью существует зависимос1ь вектора управления и (1) от вектора X (О состояния. )та зависимость устанавливается с помощью симметричной матрицы Р (/) изменяющихся во времени коэффициентов регулятора. [c.232]

    Непосредственное применение метода динамического программирования к этим задачам приведет к необходимости решения специального вида дифференциального уравнения в частных производных, в то время как принцип максимума приводит к краевой задаче для обыкновенного дифференциального уравнения, что является в общем значительно более простой задачей. Правда, следует отметить, что если решение но методу динамического ирограммирования найдено, то мы получаем значительно больше информации, так как в результате становятся известными оптимальные режимы для всех начальных условий. Принцип максимума и вариационное исчисление дают оптимальный режим только для одной комбинации начальных условий. [c.38]

    Второй раздел химической кибернетики, занимающийся разысканием оптимальных условий проведения химического процесса, пшроко использует как классические методы вариационного исчисления, так и новейшие достижения современной математики — динамическое программирование и принцип максимума. В качестве простейшего примера можно указать уже упоминавшийся выше случай параллельных реакций с разными энер ГИЯМИ активации. При осуществлении подобного процесса в каталитическом реакторе идеального вытеснения выгодно повышать температуру катализатора вдоль слоя по мере выгорания исходного вещества. Оптимальное распределение температуры в слое для реакции получения окиси этилена рассчитано в работе Слинь- [c.470]


Смотреть страницы где упоминается термин Вариационное исчисление и принцип максимума: [c.373]    [c.497]    [c.211]    [c.349]    [c.53]    [c.246]    [c.12]    [c.38]    [c.12]   
Методы оптимизации в химической технологии издание 2 (1975) -- [ c.402 ]




ПОИСК





Смотрите так же термины и статьи:

Принцип максимума



© 2025 chem21.info Реклама на сайте