Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фталевый ангидрид из антрацена

    И Антрацен Фталевый ангидрид и 1- [c.168]

Рис. 18. Принципиальная схема получения антрахинона и фталевого ангидрида из антрацен- Рис. 18. <a href="/info/1546871">Принципиальная схема получения</a> антрахинона и <a href="/info/1395">фталевого ангидрида</a> из антрацен-

    Антрацен образуется также при восстановлении антрахинона цинком (перегонка с цинковой пылью Байер, 1867 г.), а антрахинон получается, исходя из фталевого ангидрида и бензола по реакции Фриделя— Крафтса,. через стадию 2-бензоилбензойной кислоты, которая цик-лизуется под действием полифосфорной кислоты  [c.279]

    Антрацен, карбазол и фенантрен содержатся в одной и той же фракции каменноугольной смолы. Стоимость выделения каждого из этих веществ зависит от возможности использования всех трех компонентов смеси. Фенантрен никогда не находил спроса, а потребность в карбазоле никогда не достигала размеров его потенциального источника. Единственным интересным для промышленности материалом являлся антрацен. Так как производство красок в Европе примерно до 1920 г. основывалось почти целиком на каменноугольном антрацене (сырье для получения антрахинона), то возможность использования карбазола как в промышленности красителей, так и в каменноугольной индустрии представляла значительный интерес. Эта проблема, однако, не существовала для американской промышленности красителей, где при получении синтетического антрахинона исходили из фталевого ангидрида. Действительно, для того чтобы расширить существующие источники снабжения карбазолом, было необходимо получать его синтетическим путем. [c.231]

    Основное сырье для промышленного получения антрахинона и его производных - антрацен из высококипящих фракций каменноугольной смолы, образующейся в производстве кокса для металлургической промышленности, фталевый ангидрид и 1,4-нафтохинон, получаемые, например, каталитическим окислением нафталина, производные бензола и бутадиена, получаемые из продуктов химической переработки каменного угля и нефти [1]. [c.12]

    Антрацен и многие его производные получают из замещенных бензолов и фталевого ангидрида. [c.495]

    При 330 °С наблюдалась иная картина порядок реакции образования фталевого ангидрида равен 0,6 по антрацену, а реакции образования антрахинона и продуктов полного окисления имеют первый порядок по антрацену  [c.249]

    Антрацен (I), фенантрен (П) (смесь 1 1) Антрахинон (III), фталевый ангидрид (IV), малеиновый ангидрид (V) Ванадий-калий-сульфатно-силикагелевый (К,-26) 370° С, время контакта 1,36 сек. Выход продуктов и производительность в двз раза выше, чем при окислении индивидуальных 1 и II [259] [c.770]

    Антрацен (I) Фенантрен (И) Фталевый ангидрид,, флуоренон, лактон 2-оксидифенил-2-кар-боновой кислоты Антрахинон Катализатор тот же 380—415° С. В смеси 1 и 11 скорость окисления 1 возрастает, а II — изменяется мало [260] [c.770]


    Антрацен Фталевый ангидрид [c.122]

    Так, бензол окисляется в малеиновый ангидрид [71—84, 184, 186, 187], нафталин — во фталевый и малеиновый ангидриды [44, 96, 97, 110—119, 133, 183, 186, 276, 277. 290], антрацен— в антрахинон, фталевый и малеиновый ангидриды [121—123, 125—127, 186], ксилолы окисляются во фталевый, малеиновый ангидриды, толуиловый альдегид [70, 91—99, 247]. При осторожном ведении процесса можно получать на этих катализаторах также соответствующие хиноны бензохинон [85, 188], нафтохиноны. С образованием преимущественно фталевого ангидрида окисляется тетралин [188], малеинового — фурфурол [78, 146—149]. [c.544]

    Строение ализарина было установлено К. Гребе и К. Либерманом (1868 г.) на основании следующих реакций. При перегонке с порошком цинка ализарин превращается в антрацен. При конденсации фталевого ангидрида с пирокатехином в присутствии сорной кислоты получается (с небольшим выходом) ализарин наряду с изомером гистазарином [c.540]

    Антрацен может быть получен из фталевого ангидрида и бензола с последующим восстановлением антрахинона  [c.544]

    Описанным путем открывают водород в подавляющем большинстве органических веществ. Однако известны и исключения — парафин, метанол, этанол, нафтолы, антрацен, фталевый ангидрид, мочевина. [c.412]

    Антрацен каталитически окисляют кислородом воздуха (аналогично процессу окисления нафталина во фталевый ангидрид). [c.302]

    Полярографическим методом можно определять содержание примеси антрахинона в антрацене, фенантрене, карбазоле, малеиновом и фталевом ангидридах и т. п., [c.449]

    При газофазном окислении смесей углеводородов — о-ксилола и нафталина, нафталина и мегилнафталинов, антрацена и фенантрена, нафталина и антрацена — удается не только использовать более дешевое и доступное сырье, но и повысить селектизность окисления в сравнении с окислением индивидуальных углеводородов [53, с. 86—104 56—58]. Высокая эффективность окисления смесей антрацена и фенантрена объясняется тем, что обладающий меньшим потенциалом ионизации антрацен сорбируется пре-имущест)вецно на активных центрах, ответственных за образование хинонов, и тем препятствует расходованию фенантрена. Медленнее окисляющийся фенантрен, в свою очередь, препятствует сорбции образовавшегося антрахинона на центрах, ответственных за глубокое окисление, и поэтому защищает антрахинон от сгорания. В итоге повышается селективность превращения антрацена в антрахинон и фенантрена во фталевый ангидрид. Последние легко разделяются фракционной конденсацией [59]. [c.41]

    Аналогичные результаты получены при окислении антрацена на катализаторе ВКСС [152] при 360—380 °С соотношение воздух антрацен равно 60 1, нагрузка на катализатор 30 г/(л-ч). По данным [153], антрацен можно окислять в псевдоожиженном слое катализатора, представляющего собой оксид ванадия (V), нанесенный на силикагель (410—415 °С, отношение воздух антрацен равно 15 1, время контакта 5—6 с). Процесс освоен на опыт-но-промышленной установке, селективность его составляет 81 — 82% (мол.), выход по массе 94—96%. Антрахинон выделяют охлаждением в полых конденсаторах, очищают от ангидридов промывкой водой, а от смолистых примесей — сублимацией (как при синтезе из фталевого ангидрида и бензола). В промышленном масштабе испытывается конденсация антрахинона в кипящем слое продукта [154]. В этом процессе при определенной температуре [c.103]

    Перспективным вариантом получения антрахинона из антрацена является окисление антрацен-фенантреновых фракций. Возможность повышения селективности получения антрахинона из антрацена и фталевого ангидрида из фенантрена при окислении фракции была впервые показана в работе [155] . В результате исследований на опытно-промышленной [156] установке при окислении сырья, содержащего 35% антрацена и 44% фенантрена, при 380 °С, нагрузке 44 г/(дмЗ-ч) и концентрации сырья в паро-воз-душной смеси 22 г/м стабильно получали антрахинон с выходом 76% в расчете на антрацен и фталевый ангидрид с выходом 95% в расчете на фенантрен. [c.104]

    Различия в давлениях насыщенных паров антрахинона и фталевого ангидрида в воздухе делают возможным разделение их ступенчатой конденсацией [154]. Эффективна и промывка продуктов окисления горячим раствором фталевой кислоты [157]. Антрахинон выделяется в виде кристаллов и отделяется от горячего раствора, а из раствора при охлаждении осаждают фталевую кислоту, которая затем превращается во фталевый ангидрид. Технологическая схема получения антрахинона и фталевого ангидрида из антрацен-фенантреновой фракции представлена на рис. 18. Качество антрахинона и фталевого ангидрида после очистки по обычной технологии отвечает требованиям к продуктам I сорта [128, с. 80]. Достоинством процесса является использование доступного сырья, не нуждающегося в специальной очистке и более дешевого, [c.104]

    Прн исследовании кинетики окисления были отмечены две стадии быстрая — антрацен — антрахинон и медленная — аитра-хинон — фталевый ангидрид. До 400 " С реакция подчиняется уравнению первого порядка, энергия активации 145,9 кДж/моль. При 400—455 " С реакция переходит в диффузионную область. Константа скорости уменьшается. [c.130]


    При парофазпом каталитическом окисленни антрацен-фенан-треновой фракции строго определенного состава образуются антрахинон и фталевый ангидрид (Н. Д. Русьянова). [c.137]

    Антрацен и алкилантрацены из бензола и алкил 13 2 2 и 18 2 2 бензолов и фталевого ангидрида [c.322]

    Выбор носителя зависит от химических и физических свойств перегоняемого вещества. Так, воздухом можно пользоваться в качестве носителя для бензойной кислоты [55, 56], фталевого ангидрида или нафталина [57—62], которые инертны по отношению к кислороду. Для сублимации салициловой кислоты пользуются сжсью воздуха с 6% углекислого газа. Сублимация в водяном паре может применяться для таких веществ, как, например, р-нафтол, камфора, бензантрон [63, 64] или антрацен, которые плавятся выше 100° и практически нерастворимы и не разлагаются водой. Сухой сублимат можно получить непосредственно с водяным паром в качестве носителя при атмосферном [c.514]

    При фракционированной сублимации, если только имеется ясно выраженная разница в давлениях паров компонентов исходной смеси, можно тш.ательной регулировкой температур нагреваемой и охлаждаемой поверхностей влиять на соотношение скоростей испарения и конденсации компонентов при постоянном давлении. Таким образом можно отделить кофеин от теобромина при фракционированной сублимации. При неподвижном источнике нагрева можно постепенно поднимать температуру реторты и собирать последовательные фракции сублимата. Они будут содержать постепенно увеличивающееся или уменьшающееся количество интересующего соединения. Если применяют горизонтальный трубчатый прибор, то передвижной нагреватель (см. раздел IV, 2, В) может привести к тем же самым результатам. Так, после того, как в холодном конце трубки перестает собираться сублимат, можно поднять температуру нагревателя, отодвинуть холодный конец трубки еще немного от нагревателя и собрать следующую фракцию сублимата [296]. В конце сублимации каждую из фракций можно тщательно собрать с помощью длинного металлического шпателя или же можно разрезать трубку. Промышленные способы фракционированной сублимации заключаются в том, что смесь постепенно нагревают, например с помощью электричества, и собирают ряд сублиматов на движущейся поверхности конденсации [297, 298]. Постепенная конденсация может быть также осуществлена пропусканием паров через ряд конденсаторов, имеющих постоянную, но постепенно от-конденсатора к конденсатору уменьшающуюся температуру. В промышленности [299—305] разделение таких смесей, как антрахинон с антраценом или фталевый ангидрид с нафталином, может быть достигнуто, если перегородить ящикообразную конденсационную камеру, через которую проходят пары, на части с помощью параллельно расположенных проволочных сеток. Собирающиеся на сетках кристаллы можно периодически стряхивать при помощи удара качающихся грузил каждая часть снабжается охлаждающей перегородкой. По другому способу цилиндрическая конденсирующая камера разделена с помощью проволочной сетки на ряд концентрических цилиндров 1302, 306—308], по которым передвигаются щетки для удаления кристаллов. Камеры по своей емкости увеличиваются в направлении от центра и пары вводятся сначала в самую центральную камеру, которая может также содержать испаритель. Наиболее очищенный продукт собирается в самой внутренней камере, а загрязнения—в самой наружной, или же наоборот. [c.539]

    Изложенные выше результаты позволяют представить кинетическую схему процессов, происходящих при окислении смесей нафталина и металнафталина в проточном реакторе. Метилиафталин содержится в смеси в меньших количествах, чем нафталин, и окисляется быстрее, поэтому он влияет на окисление нафталина только в первых слоях катализатора, сильнее тормозя образование 1,4-нафтохинона, чем фталевого ангидрида, тем самым увеличивая селективность реакции окислепия нафталина во фталевый ангидрид. Аналогично повышается селективность по фталевому ангидриду реакции окисления фенантрена при окислении смеси антрацен-фенантрен [7]. [c.85]

    Смесь антрацен (I), фенантрен (II) Антрахинон (III), фталевый ангидрид (IV), малеиновый ангидрид (V) Ванадий-калий-сульфагно-оиликагелевый катализатор К-26 370° С, I 11 = 1 1, время контакта 1,36 сек. Выход III — 80%, IV и V — 80% (вместо 60 и 70% соответственно, при окислении чисгых I и 11) i380) [c.503]

    Сырой антрацен (I) Фталевый ангидрид (II), малеиновый ангидрид (III), антрахинон Катализатор К-26 паровая фаза, 415° С, время контакта 1 сек, нагрузка 60 г/л, состав исходной смеси 1—24,7%, фенантрена— 18,9%, карба-зола — 29,5%, примесей — 26,9%. Выход (П - --4-III) — 165,5%, считая на фенантрен, антра-хинона — 41,8% (в расчете на I). Общий выход продуктов окисления 75% (в расчете на 1) [254] [c.769]

    В СССР Ю. г. Шерман достиг ценных результатов при окислении технического антрацена в антрахинон, пользуясь в качестве катализатора пятиокисью ванадия. Схема установки в основных чертах близка к схеме, применяемой при получении фталевого ангидрида (см. ниже, стр. 857) подогретый воздух проходит над расплавленным антраценом, увлекает его пары и, смешиваясь с воздухом, идущим непосредственно из подогревателя, проходит в контактный аппарат, подобный описанному ниже для фталевого ангидрида. Антрахинон собирается в конденсаторах, расположенных после конвертора. Примеси и некоторая часть антрацена частично сгорают, а частично образуют фталевый ангидрид, являющийся основным загрязнением получаемого антрахинона. Из готового антрахинона ф1алевый ангидрид легко удаляется промывкой горячей водой. [c.851]

    Основным исходным сырьем в произ-ве К. с. служат ароматич. углеводороды бензол, толуол, ксилол, нафталин, антрацен, в меньшей степени мезитилен, псевдокумол, аценафтен, пирен и гетероциклич. соединения — пиридин и карбазол. Большое разнообразие красителей и многостадий-ность их синтеза иа продуктов коксохимич. пром-сти определили необходимость организации произ-ва товарных промежуточных продуктов сульфокислот, нитро-, галогено-, амино-, оксипроизводных названных углеводородов, карбоновых кислот, более сложных соединений, содержащих различные группы в ароматич. ядре антрахинона и его замещенных. Нек-рые промежуточные продукты — анилин, фонол, бета-нафтол, фталевый ангидрид и т. д. — широко применяют в других отраслях химич. произ-ва пластич. масс, синтетич. смол, химикатов Для произ-ва резины, гербицидов, взрывчатых, лекарственных, душистых и текстильно-вспомогательных веществ. [c.375]

    Из каменноугольной смолы выделяют фенол и крезолы, используемые для производства пластических масс, нафталин, из которого получают фталевый ангидрид, в сзою очередь являющийся исходным продуктом для важных красителей, антрацен и карбазол — исходные продукты для синтезов. [c.3]

    При окислении антрацен-фенантреиовой фракции на сложном ванадий-калий-сульфатном катализаторе повышается селективность по антрахиноиу, фталевому и малеиновому ангидридам и почти вдвое увеличивается производительность процесса по сравнению с окислением индивидуальных углеводородов [51]- Изучение кинетики окисления отдельных компонентов и смесей антрацена с фенантреном проточно-циркуляционным методом показало [51], что фенантрен не влияет на превращения антрацена, зато антрацен сильно тормозит частные реакции окисления фенантрена в 9,10-фенантренхинон, флуоренон и фталевый ангидрид (считается, что эти соединения образуются из исходного вещества независимыми путями). Порядок суммарной реакции по кислороду одинаков как при раздельном, так и при совместном окислении углеводородов. [c.23]


Смотреть страницы где упоминается термин Фталевый ангидрид из антрацена: [c.210]    [c.10]    [c.186]    [c.104]    [c.514]    [c.36]    [c.29]    [c.249]    [c.660]    [c.71]    [c.504]    [c.286]    [c.359]    [c.147]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.995 ]




ПОИСК





Смотрите так же термины и статьи:

Антрацен

Фталевый ангидрид



© 2024 chem21.info Реклама на сайте