Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Антрацен окисление

    Фенантрен имеет большую энергию резонанса (414,5 кДж/моль), чем антрацен (360 кДж/моль), т. е. он более ароматичен и, следовательно, менее реакционноспособен. Гидрирование, окисление и реакции с электрофильными реагентами направлены в первую очередь в положения 9, 10, хотя они менее активны, чем в молекуле антрацена [c.280]

    Антрацен вступает в реакции присоединения и окисления, затрагивая при этом положения 9 и 10  [c.334]


    Антрахинон. Это вещество, имеющее большое значение для промышленности красителей, было впервые получено Лораном в 1840 г. при действии азотной кислоты на антрацен. Окисление антрацена до антрахинона протекает настолько легко, что азотная кислота не оказывает нитрующего действия а процессе реакции. [c.717]

    Образование хинонов из углеводородов всегда происходит легче, если двойные связи в а, р-положении к карбонильной группе стабилизированы алкильными и в особенности арильными группами. Так, например, бензол лишь в особо специфических условиях с трудом удается прямо окислить в хинон (с помощью перекиси серебра), антрацен же довольно гладко окисляется в антрахинон, фенантрен —в фенантренхинон нафталин по окисляемости занимает промежуточное положение. Окисление может быть осуществлено хромовой кислотой, перекисью водорода или кислородом воздуха в присутствии пятиокиси ванадия. Прп окислении хромовой кислотой в сравнимых условиях были получены следующие продукты  [c.27]

    Разность между скоростями сульфирования ароматических моно-ядерных углеводородов и последующего сульфирования образовавшихся на первой стадии моносульфокислот достаточно велика, что позволяет достичь значительной конверсии в необходимые продукты. Однако для высших ароматических полициклических соединений (антрацен, фенантрен) эта разность невелика, поэтому в большинстве случаев образуется много как моно-, так и полисульфокислот. В этом случае скорость окисления также достаточно велика. [c.324]

    Окислением ароматических колец могут быть получены фенолы, хиноны и карбоновые кислоты, весьма важные для синтеза промежуточных продуктов, красителей и полимеров. Окисление ароматических колец, как правило, идет значительно труднее, чем окислительные реакции в боковых цепях. Из ароматических углеводородов бензол, в котором электронная плотность полностью выравнена, окисляется труднее всего. Нафталин, в котором эта выравненность нарушена, окисляется значительно легче. Еще легче по тем же причинам идут эти процессы с антраценом и фенантреном. Во всех случаях электронодонорные заместители в кольце облегчают течение реакций окисления. [c.323]

    Ароматические многоядерные углеводороды можно окислять в других доступных средах. Так, при окислении воздухом эмульсии ароматических углеводородов в 4—6%-ном растворе щелочи при 260—280 °С и 7,9—8,0 МПа антрацен окисляется с высоким выходом в антрахинон, а из других углеводородов образуются смеси поликарбоновых кислот ароматического ряда, составом которых можно управлять [70]. Такой процесс пока не реализован из-за жестких условий его проведения и значительного расхода щелочи (1 моль на 1 моль углеводорода). [c.44]


    Химические методы используют для определения в смесях содержания полициклических ароматических углеводородов. Так, антрацен определяют после окисления его хромовым ангидридом в уксусной кислоте в виде антрахинона либо гидролизом продукта взаимодействия антрацена и малеинового ангидрида с последующим титрованием водного раствора малеиновой кислоты [43, с. 366— 369]. Последний метод пригоден для анализа технического антрацена. [c.132]

    При достаточно высоких катодных потенциалах восстанавливаются фенилзамещенные производные этилена и ацетилена (стирол, стильбен и др.), а также углеводороды с конденсированными ароматическими ядрами (нафталин, антрацен, 3,4-бензпирен и т.п.) и бифенилы. Ароматические соединения с одиночными бензольными кольцами не восстанавливаются. Следует заметить, что полициклические углеводороды при небольших анодных потенциалах могут окисляться на графитовом электроде с образованием одноэлектронной волны окисления. Этот метод используется для вольтамперометрического определения бенз(а)пирена в объектах окружающей среды. [c.462]

    Расположите приведенные ниже углеводороды в порядке легкости окисления кислородом-в присутствии катализатора нафталин, оензол, антрацен, пентацен, фенантрен. [c.325]

    При действии азотной кислоты на антрацен происходит окисление его в антрахинон. Концентрированная азотная кислота уже на холоду превращает диацетил ализарин в нитропроизводное [c.28]

    Применяемый в этом случае окислитель (хлорноватокислый натрий в присутствии пятиокиси ванадия) не является сильным окислителем и хотя он легко окисляет весьма реакционноспособный антрацен, однако его нельзя применить для превращения углеводородов ряда нафталина и фенантрена в соответствующие хиноны или же для окисления аценафтена или флуорена (наблюдения проверявших этот синтез Физера и Поттера). [c.546]

    К раствору (или взвеси) 2,5 жмоля углеводорода в 15 мл чистого сухого бензола добавляют 2,5 жмоля четырехокиси осмия и 5 жмолей чистого пиридина. Постепенно окраска становится более глубокой, и выпадает темно-коричневый микрокристаллический комплекс. С 3,4-бензпиреном и 1,2-бенз-антраценом и его гомологами при комнатной температуре реакция заканчивается через 24—48 час. В случае менее реакционноспособных или менее растворимых углеводородов (например антрацена, 1,2,5,6-дибензантрацена) для завершения реакции при комнатной температуре требуется несколько суток или даже недель. Окисление хризена заканчивается через неделю при 35°. [c.149]

    Антрацен и другие конденсированные углеводороды при окислении дихроматом в кислой среде образуют ароматические дикетоны—хиноны  [c.374]

    Однако и здесь ощущалась настоятельная потребность в уточ-нении характера частицы, ответственной за цепной процесс. В 1931г. Бекстрём и X. Битти в работе по ингибированному антраценом окислению бензальдегида [42] признали, подобно Миласу, что индуцированное окисление антрацена осуществляется при реакции его с промежуточным перекисным соединением. Но форма этого промежуточного продукта не соответствует стабильной пербензойной кислоте, он должен рассматриваться как химически индивидуальное вещество. Предложенный авторами пероксид [c.299]

    Вместе с тем отмечалось, что на окисляемость смесей углеводородов существенно влияет присутствие некоторых ароматических углеводородов особенно сильное ингибирующее действие оказывают антрацен, фенантрен, нафталин, ди- и трифе-нилметан. Ароматические углеводороды с боковыми цепями в малых концентрациях (до 10%) слабо тормозят окисление нафтенов, и только в больших концентрациях (выше 20%) при глубоком окислении они заметно снижают скорость окисления нафтенов. [c.39]

    К эффективным естественным ингибиторам окисления относятся также конденсированные ароматические системы — нафталин, фенантрен, антрацен и др. Соединения этого типа сравнительно легко образуют свободные радикалы и ион-радикалы. Вероятно, этими свойствами конденсированных систем и обусловливается их указанное выше ингибирующее действие. Выделенные из антрацена парамагнитные соединения характеризуются более высоким ингибирующим действием, чем исходный антрацен [42]. Свободные радикалы образуются в процессе синтеза антрацена, при его термообработке (450 °С) или облучении. При окислении кислородом конденсированных ароматических соединений образуются также арилоксидные свободные радикалы. Таким образом, многие ароматические соединения, легко образующие стабильные свободные радикалы или ион-радикалы, могут выступать в качестве естественных ингибиторов окисления. [c.43]

    Исключительно стабильны против действия кислорода воздуха голоядерные ароматические углеводороды бензол, нафталин, антрацен, фенантрен, дифенил и др. Они очень мало изменяются даже при высоких температурах и давлениях. Ароматические углеводороды с алифатическими цепями и полициклические ароматические углеводороды по стабильности, несколько уступают моно -и бициклическим. С увеличением числа и длины боковых цепей стабильность ароматических углеводородов падает. Наличие третичного углеродного атома, несимметричность строения, усложненность молекулы также снижают иу стойкость к окислению. Наф-тено-ароматические углеводоролдл одинакового строения с аро- [c.14]


    Окисление ароматических и алкилароматических углеводородов—один из наиболее распространенных способов переработки ароматических углеводородов. Этим методом перерабатывается около 5% бензола [13] для нафталина доля окисления составляет уже около 70—80% [48], а переработка таких соединений, как о- и Л-1КСИЛ0Л, изопропилбензол, антрацен, три- и тетраметилбензолы, почти полностью базируется на окислении. Окисление положено в основу перспективных процессов переработки и многоядерных конденсированных ароматических углеводородов фенантрена, пирена, флуорена, аценафтена и др. [c.36]

    При газофазном окислении смесей углеводородов — о-ксилола и нафталина, нафталина и мегилнафталинов, антрацена и фенантрена, нафталина и антрацена — удается не только использовать более дешевое и доступное сырье, но и повысить селектизность окисления в сравнении с окислением индивидуальных углеводородов [53, с. 86—104 56—58]. Высокая эффективность окисления смесей антрацена и фенантрена объясняется тем, что обладающий меньшим потенциалом ионизации антрацен сорбируется пре-имущест)вецно на активных центрах, ответственных за образование хинонов, и тем препятствует расходованию фенантрена. Медленнее окисляющийся фенантрен, в свою очередь, препятствует сорбции образовавшегося антрахинона на центрах, ответственных за глубокое окисление, и поэтому защищает антрахинон от сгорания. В итоге повышается селективность превращения антрацена в антрахинон и фенантрена во фталевый ангидрид. Последние легко разделяются фракционной конденсацией [59]. [c.41]

    Аналогичные результаты получены при окислении антрацена на катализаторе ВКСС [152] при 360—380 °С соотношение воздух антрацен равно 60 1, нагрузка на катализатор 30 г/(л-ч). По данным [153], антрацен можно окислять в псевдоожиженном слое катализатора, представляющего собой оксид ванадия (V), нанесенный на силикагель (410—415 °С, отношение воздух антрацен равно 15 1, время контакта 5—6 с). Процесс освоен на опыт-но-промышленной установке, селективность его составляет 81 — 82% (мол.), выход по массе 94—96%. Антрахинон выделяют охлаждением в полых конденсаторах, очищают от ангидридов промывкой водой, а от смолистых примесей — сублимацией (как при синтезе из фталевого ангидрида и бензола). В промышленном масштабе испытывается конденсация антрахинона в кипящем слое продукта [154]. В этом процессе при определенной температуре [c.103]

    Перспективным вариантом получения антрахинона из антрацена является окисление антрацен-фенантреновых фракций. Возможность повышения селективности получения антрахинона из антрацена и фталевого ангидрида из фенантрена при окислении фракции была впервые показана в работе [155] . В результате исследований на опытно-промышленной [156] установке при окислении сырья, содержащего 35% антрацена и 44% фенантрена, при 380 °С, нагрузке 44 г/(дмЗ-ч) и концентрации сырья в паро-воз-душной смеси 22 г/м стабильно получали антрахинон с выходом 76% в расчете на антрацен и фталевый ангидрид с выходом 95% в расчете на фенантрен. [c.104]

    Различия в давлениях насыщенных паров антрахинона и фталевого ангидрида в воздухе делают возможным разделение их ступенчатой конденсацией [154]. Эффективна и промывка продуктов окисления горячим раствором фталевой кислоты [157]. Антрахинон выделяется в виде кристаллов и отделяется от горячего раствора, а из раствора при охлаждении осаждают фталевую кислоту, которая затем превращается во фталевый ангидрид. Технологическая схема получения антрахинона и фталевого ангидрида из антрацен-фенантреновой фракции представлена на рис. 18. Качество антрахинона и фталевого ангидрида после очистки по обычной технологии отвечает требованиям к продуктам I сорта [128, с. 80]. Достоинством процесса является использование доступного сырья, не нуждающегося в специальной очистке и более дешевого, [c.104]

    Для окисления в антрахинон используют 93%-ный антрацен, а в перспективе предполагают перейти на 96%-ный. Отсутствуют систематические исследования, позволяюшие определить допустимое содержание различных примесей в антрацене. Можно лишь говорить о том, что с повышением чистоты антрацена уменьшается выход побочных продуктов. И если образование фталевого и малеинового ангидрида, правда, в меньшем количестве, происходит и в случае окисления чистого антрацена (а очистка от них необходима во всех случаях и особой трудности не представляет), то смолистые вещества, образующиеся из примесей, содержащихся в антрацене, сорбируются на частицах антрахинона, и для их удаления необходима сублимационная очистка последнего. Примеси в силу более глубокого окисления ускоряют также восстановление катализатора и его дезактивацию. Наибольшую опасность из них представляют примеси азотсодержащих соединений. и, в особенности, карбазол. [c.130]

    Одним из перспективных вариантов утилизации антрацена и фенантрена оказывается окисление антрацен-фенантреновой фракции (см. гл. 2). Для получения такой фракции можно обойтись без растворителей [18, с. 87—96 27]. Соотношение антрацена и фенантрена в этой смеси должно быть в пределах от 1 1 до 1 1,5, содержание примесей не должно превыщать —25%, из них содержание карбазола не более 13%. При ректификации на укрупненной установке с фракционной колонной эффективностью до 40 т. т. из сырого антрацена получена с выходом =50% антра-цен-фенантреновая фракция следующего состава (%)  [c.309]

    Уровень разработки процесса выделения и окисления антрацен-фенантреновой фракции (см. гл. 2) делает его наиболее перспективным способом переработки и использования сырого антрацена. [c.309]

    Антиокислители комбинированного действия, способные взаимодействовать с алкильными и пероксидными радикалами и пассивирующие каталитическое действие металла. Это соединения с разными функциональными группами (например, с сульфидной, реагирующей с ROOH, и фенольной, обрывающей цепи по реакции с ROO ) или с одной группой, способной реагировать с R и ROO- (метиленхинон, антрацен) или антиокислители, образующие при окислении продукты, которые тормозят окисление по другому механизму. [c.356]

    С бензолом и толуолом реакция идет медлсш о или вовсе ие й.дет, но уже гидр азобензол легко окисляется до азобензола (при 20 22 ) со 100%-ным выходом бензальдегид полностью окисляется в бензойную кислоту, а антрацен — в антрахиион (на 70%). Кроме отмеченного выше синтеза витамина А (из каротина), можно указать еще на производство какодиловой кислоты (как антималярийпого средства) и на реакцию окисления трехокиси тиопирииа в антипирин. [c.439]

    Норриш и Тэйлор [24 изучали окисление бензола в струевых условиях при атмосферном давлении и 085 С. В работе проводился подробный анализ продуктов реакции. В качестве основных продуктов были обнаружены СО, СО2, фенол, вода, углеводороды С2 и водород. Кроме того, были найдены катехин, хиноль, дифенил, антрацен, НСНО и НСООН. Перекисей найти не удалось. Баланс но углероду был сведен на 96%. На рис. 174 приведены кинетические кривые образования фенола, СО, СО2, Н2О, расхода О2 и СаНд и рассчитанная кривая прироста давления. Как видим, все крив1,1е показывают отчетливо выраженное самоускорение. [c.432]

    Применение. Почти весь добываемый из каменноугольной смолы антрацен путем окисления перерабатывается в так называемый антрахинон (стр. 375) — исходное вещество для синтеза красителя ализарина и других так называемых антрахиноновых красителей (стр. 408). [c.350]

    При нитровании ароматических углеводородов в присутствии уксусной кислоты нитрогруппа направляется в боковую цепь. При энергичном нитровании реакция может сопровождаться окислением. Этим методом получают З-нитро-4-оксибензальдегид из 4-оксибензальдегида, нитро антрацен из антрацена и динитрокарбазол из карбазола. Ароматически амины нитруются до нитроаминов смесью азотной кислоты, уксусной ангидрида и уксусной кислоты Азотная кислота не должна содержат примеси азотистой кислоты. [c.212]

    Границы применения (см. также разд. Г, 6,2.1) о-диалкилбен-золы можно окислять лишь в щелочной среде при действии хромовой кислоты в ледяной уксусной кислоте происходит разложе-ние. Некоторые многоядерные арены при окислении хромовой кислотой превращаются в хиноны (антрацен, фенантрен). [c.321]

    Антрацен производными называют группу природных соединений, в основе которых лежит ядро антрацена различной степени окисленностй по среднему кольцу (1, кольцо В)  [c.67]

    К последнему типу присадок относятся соединения с разными функциональными группами (например, с сульфидной, реагирующей с ROOH, и фенольной, обрывающей цепи по реакции с перок-сирадикалами ROO") или способной реагировать со свободными радикалами (метиленхиноп, антрацен). Для стабилизации автомобильных бензинов в настоящее время применяются антиокислители только первой группы. Основной реакцией, обрывающей цепи окисления, является взаимодействие молекул антиокислителей, имеющих слабые связи 0-Н и N-H с пероксидными радикалами. Эффективность определяется соотношением скоростей процессов, обрывающих и продолжающих цепи окисления с участием молекул и радикалов антиокислителей. Чем выше это соотношение в пользу реакций обрыва цепей окисления, тем меньше требуется антиокислителя для стабилизации углеводородных сред, содержащих продукты, склонные к окислению. Таким образом, важнейшим требованием к антиокислительным присадкам для автомобильных бензинов является малая рабочая концентрация, которая для лучших присадок составляет сотые и тысячные доли процента по массе. [c.368]

    Некоторые соединения тормозят окисление, одновременно вступая в несколько реакций. Например, они реагируют и с алкильными, и с пероксильными радикалами (антрацен, мети-ленхинон), разрушают гидропероксиды и обрывают цепи по [c.398]

    Кук и Шентол [28] и Баджер [4, 5], основываясь на обнаруженной Криги [31] способности четырехокиси осмия гидро-ксилировать фенантрен в положении 9, 10, изучили действие этого реагента на другие полициклические ароматические углеводороды, содержащие скелет фенантрена, и на антрацен. Реакция протекает медленнее, чем с этиленовыми соединениями, причем атакуются наиболее реакционноспособные связи ароматического характера. Эта реакция резко отличается от атаки ионными реагентами, направленной на наиболее ре к-ционноспособные центры молекулы, и имеет теоретическое значение для изучения характера двойной связи в полициклических соединениях [4, 5]. Результаты окисления ароматических углеводородов четырехокисью осмия представляют особый интерес, так как образующиеся продукты напоминают продукты окислительного метаболизма указанных углеводородов [28]. Гликоли, приведенные в табл. 6, получены из указанных углеводородов [4, 5, 28, 76]. [c.124]

    Технический антрацен с содержанием чистого от 45 — 507о до 80 и 95% применяется почти исключительно для окисления в антрахинон. Примесями технического антрацена являются главным образом фенантрен, карбазол и метилантрацен наряду с другими углеводородными и азотсодержащими соединениями. Химическая оценка технического антрацена имеет назначением исключительно определить содержание в нем чистого антрацена и производится с теми или иными видоизменениями по методу Люка окислением хромовой кислотой в растворе уксусной кислоты. При этом антрацен окисляется в стойкий в условиях реакции антрахинон, и примеси переходят или в углекислоту или в легко сульфируемые соединения. По количеству полученного антрахинона судят о содержании в техническом материале чистого антрацена ). [c.15]


Смотреть страницы где упоминается термин Антрацен окисление: [c.8]    [c.361]    [c.670]    [c.25]    [c.345]    [c.142]    [c.670]    [c.1012]   
Химия и технология ароматических соединений в задачах и упражнениях (1984) -- [ c.323 , c.328 ]

Общая химическая технология органических веществ (1966) -- [ c.282 ]

Органическая химия (2002) -- [ c.419 ]

Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.986 , c.995 , c.999 ]

Основы химии и технологии ароматических соединений (1992) -- [ c.504 ]

Электрохимический синтез органических веществ (1976) -- [ c.16 , c.46 , c.47 , c.183 , c.269 ]

Основы органической химии 2 Издание 2 (1978) -- [ c.219 ]

Основы синтеза промежуточных продуктов и красителей (1950) -- [ c.653 , c.654 , c.656 , c.658 , c.664 , c.847 , c.849 ]

Полициклические углеводороды Том 1 (1971) -- [ c.80 , c.290 ]

Электрохимический синтез органических веществ (1976) -- [ c.16 , c.46 , c.47 , c.183 , c.269 ]

Основы синтеза промежуточных продуктов и красителей (1950) -- [ c.653 , c.654 , c.656 , c.658 , c.664 , c.847 , c.849 ]

Химия и технология ароматических соединений в задачах и упражнениях Издание 2 (1984) -- [ c.323 , c.328 ]

Химия красителей (1970) -- [ c.44 , c.255 ]

Химия и технология промежуточных продуктов (1980) -- [ c.520 ]

Препаративная органическая химия Издание 2 (1964) -- [ c.672 , c.675 , c.679 , c.685 ]

Органическая химия (1964) -- [ c.429 , c.430 ]

Основы органической химии Ч 2 (1968) -- [ c.159 ]

Микро и полимикро методы органической химии (1960) -- [ c.223 ]

Основы синтеза промежуточных продуктов и красителей Издание 4 (1955) -- [ c.21 , c.27 , c.602 , c.605 , c.607 , c.608 , c.615 , c.632 , c.633 ]




ПОИСК





Смотрите так же термины и статьи:

Алюмосиликатный катализатор окисление антрацена

Антрацен

Антрацен как замедлитель окисления

Изучение механизма гидроксилирования фенола и окисления антрацена перекисными соединениями с помощью

Каталитическое окисление антрацена (таблица

Нитробензол как при окислении антрацена

Окисление антрацена в антрахинон, фталевый

Окисление антрацена, оптимальная температур

Окисление каталитическое антрацена

Серная кис юта окисление антрацена посредством

Фталевый ангидрид из антрацена его с кислотами, получаемыми окисление.м парафиновых углеводородо

Цинк окись его окисление антрацена в присутствии



© 2024 chem21.info Реклама на сайте