Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропные смеси, бензол углеводороды

    Ароматические углеводороды образуют с парафиновыми и нафтеновыми углеводородами, содержащимися в продуктах риформинга и пиролиза, азеотропные смеси из таких смесей выделить ароматические углеводороды с высокой степенью чистоты обычной ректификацией не удается. Азеотропная смесь ароматических углеводородов Сб — Са с парафиновыми и нафтеновыми углеводородами характеризуется более низкой температурой кипения, т. е. большим давлением насыщенных паров, чем каждый из компонентов этой смеси. Температуры кипения и состав азеотропных смесей бензола, толуола и ароматических углеводородов С а с некоторыми парафиновыми и нафтеновыми углеводородами приведены в табл. 2.1, 2.2 и 2.3 [3— 15]. [c.37]


    Классическим примером азеотропной смеси углеводородов с минимальной температурой кипения являются циклогексан и бензол [14]. Эти вещества, кипящие соответственно при 80,8 и 80,1°, образуют азеотропную смесь, кипящую при 77,7°. Кривая давления пара этой смеси подобна кривой показанной на рис. 13. На рис. 14 показана х — г/-диаграмма для этой смеси. Состав азеотропной смеси соответствует точке пересечения кривой у = х) и прямой, образующей с осями координат угол в 45° (у = х). Если производить фракционную перегонку смеси бензола с циклогексаном, содержащей 20%о мол. циклогексана, то первым погоном будет [c.120]

    На рис. 200 приведена схема установки для выделения бензола, толуола и ксилолов. Экстракт I, представляющий собой смесь ароматических углеводородов, после адсорбционной очистки для извлечения непредельных соединений и смол подается в среднюю часть бензольной колонны-2, сверху которой отбирается азеотропная смесь II, состоящая из неароматических углеводородов и части [c.325]

    Очистка бензола. Для нолучения и очистки бензола из углеводородных смесей нефтяного происхождения посредством экстракционной перегонки требуется такая же тщательная подготовка исходного продукта, как я для получения и очистки толуола. В табл. 22 (стр. 121) приведены некоторые из известных азеотропных смесей бензола с другими углеводородами. Хорошо выраженную азеотропную смесь образуют циклогексан и бензол. Для приготовления бензольного концентрата может применяться то же оборудование, что и для приготовления толуольного концентрата, при условии соответствующего изменения температур отбора фракций. Очистка бензола путем экстракционной перегонки аналогична описанной выше очистке толуола [17], В качестве растворителя обычно применяется фенол. В бензинах и других фракциях прямой гонки содержатся очень малые концентрации бензола. Часто он получается путем дегидрирования легкого лигроина, содержащего метилциклопентаны и циклогексан. [c.107]

    Разделяющий агент должен образовывать азеотропные смеси со всеми насыщенными углеводородами, присутствующими в бензоле, и не образовывать их с самим бензолом. Если азеотропная смесь с бензолом все-таки образуется, то ее температура кипения должна быть выше температуры кипения азеотропных смесей с насыщенными углеводородами и ниже температуры кипения бензола. Метиловый спирт, рекомендовавшийся для разделения [87], образует азеотропные смеси не только со всеми насыщенными углеводородами, но и с бензолом, а незначительная разность температур кипения азеотропных смесей с бензолом (58,7 °С), н-гептаном (59,1 °С) и метилциклогексаном (59,5°С) не позволяет чет- [c.236]


    Относительная летучесть а н-гептана (т. кип. 98,4° С), находящегося в смеси с метилциклогексаном (т. кип. 100,3° С), равна 1,08. В присутствии 92% (мол.) анилина значение а повышается до 1,52. Аналогично, относительная летучесть н-гексана (т. кип. 68,8° С), смешанного с метилциклопентаном (т. кип. 71,9° С), равна 1,10, но в присутствии 80% (мол.) анилина повышается до 1,45. С помощью экстракционной перегонки в присутствии более 100% (мол.) анилина можно разрушить азеотропную смесь бензола с циклогекса-ном, отогнав последний в чистом виде. Примеры экстракционной перегонки приведены в гл. VI (отделение С4-углеводородов) и в гл. XI (отделение бутадиена). [c.26]

    Близость температур кипения, о которой можно судить на основании табл. 50, не является единственной причиной трудности выделения индивидуальных нафтенов. В смеси с другими углеводородами нафтены склонны образовывать азеотропные и другие смеси, давление паров которых не подчиняется законам, действительным для обычных смесей даже простейшие компоненты, а именно бензол и циклогексан, образуют азеотропную смесь. Простой ректификации недостаточно, чтобы выделить в чистом состоянии какой-нибудь нафтен, присутствующий в сырой нефти. Нафтены можно отделить от ароматических углеводородов с помощью экстракции растворителями. Относительно легко осуществляется такое разделение методами [c.235]

    Процессы ректификации с третьим компонентом применяются нри разделении, например, таких смесей углеводородов, как ароматические (бензол, толуол, ксилолы) и близкокипящие или образующие азеотропную смесь с ними насыщенные углеводороды, как пропан и пропилен, бутаны и бутилены и т. д. [c.205]

    При нормальном режиме экстракции, квалифицированном подборе сырья и экстрагента (включая анти-растворитель) содержание парафиновых углеводородов (гексана) в экстракте незначительно. В этом случае колонна Для отгона из экстракта азеотропной смеси гексана и бензола в технологической схеме не используется. Азеотропная смесь отводится с верха бензольной колонны и после охлаждения и конденсации вводится в рециркулятом в экстракционную колонну. Бензол выводится с 5-й или 7—й тарелки с верха это же колонны в качестве бокового погона и насосом через холодильник откачивается, в товарный парк. Ухудшение качества индивидуальных ароматических углеводородов, как правило, является следствием нарушения технологического режима экстракции или рен- [c.166]

    Температура кипения азеотроп еой смеси, °С Углеводород, образующий азеотропную смесь с бензолом Состав, % вес.  [c.147]

    На фиг. 4-6 показано, как изменяются точки кипения и состав азеотропных смесей данного углеводорода (бензола) с изменением точек кипения и строения веществ, образующих азеотропную смесь (спиртов). Приведены [c.79]

    Установлено [89], что четкая отрицательная азеотропная смесь образуется с метилциклогексаном и пропилформиатом или ацетонитрилом (рис. 54). Ацетонитрил, кроме того, образует азеотрои-ную смесь с н-гептаном. Температуры кипения азеотропных смесей ацетонитрила с различными насыщенными углеводородами, присутствующими в бензоле, отличны от температуры кипения бензола [90]  [c.237]

    Многие углеводороды образуют с водой азеотропную смесь. Так, бензол дает с водой смесь, кипящую при 69 °С, а толуол — при 84,1 °С. В то же время температуры кипения отдельных компонентов много выше бензола 80,4 °С, толуола 110,8°С. Поддерживая температуру в реакторе равной температуре кипения азеотропа, можно удалить воду, образующуюся в процессе реакции нитрования. Преимущество данного метода в том, что при нем не получается отработанной кислоты и, следовательно, нет необходимости в регенерации. [c.80]

    Одним из первых методов выделения бензола и толуола из продуктов каталитического риформинга был метод азеотропной дистилляции с метилэтилкетоном, метанолом или ацетоном. Эти растворители образуют азеотропную смесь с неароматическими углеводородами, которая отгоняется из колонны, а ароматические углеводороды остаются в остатке. Отделение от неароматических углеводородов третьего компонента осуществляется затем путем экстракции его водой. [c.91]

    Из этого обстоятельства следует очень важный вывод при любом содержании насыщенных углеводородов в бензоле (при-ректификации в первую очередь) будут выделяться азеотропные смеси. Чем выше температура кипения насыщенного углеводорода, тем в общем меньше разница между температурами кипения азеотропной смеси и бензола. Исключение составляет только азеотропная смесь циклогексана с бензолом. [c.137]

    В чистом бензоле обычно содержится 0,2—0,8% насыщенных углеводородов. Представлены они преимущественно циклогексаном, образующим с бензолом азеотропную смесь, кипящую при 78,5°,лИ н.-гептаном, кипящим при 95,5°, но образующим с бензолом азеотропную смесь, кипящую при 80,1°. [c.305]

    Близость температур кипения, о которой можно судить на основании табл. 55, не является единственной причиной трудности выделения индивидуальных нафтенов. В смеси с другими углеводородами нафтены склонны образовывать азеотропные и другие смеси, давление пара которых не следует законам, действительным для обычных смесей даже простейшая смесь, а именно бензол с циклогексаном, представляет собой азеотропную смесь. Простой ректификации недостаточно, чтобы выделить в чистом состоянии какой-либо нафтен, присутствующий в сырой нефти. [c.221]


    Закон Рауля, являющийся одним из основных в теории перегонки и ректификации, приложим далеко не ко всем растворам. Существуют так называемые азеотропные смеси, образующие при известном составе нераздельно кипящую фракцию, перегоняющуюся при постоянной температуре, которая мо-жет быть или более высокой или более низкой, чем температура кипения компонентов. Например, бензол <т. кип. 80,2° С) и циклогексан (т. кип. 80,75° С) образуют азеотропную смесь с содержанием 55 /о бензола и температурой кипения 77,5° С. Разделить азеотропные смеси перегонкой и ректификацией невозможно, так как при известной температуре будет кипеть нераздельно кипящая смесь. Чтобы разделить азеотропную смесь, приходится прибегать или к изменению температуры перегонки путем изменения внешнего давления или прибавлением третьего компонента (при изменении давления паров меняется состав азеотропной смеси), или использовать различную растворимость или различие температур застывания компонентов, входящих в азеотропную смесь. При обычной перегонке нефти, когда получаются фракции, кипящие в широких интервалах температур, наличием азеотропных смесей можно пренебречь и считать, что нефть представляет идеальный раствор, следующий закону Рауля. С особенностями азеотропных растворов приходится сталкиваться при выделении из легких фракций нефти отдельных индивидуальных углеводородов, особенно ароматических. Например для правильного распределения метановых углеводородов по двухградусньш фракциям при тщательной ректификации бензина оказалось необходимым удалить предварительно из бензмна ароматические углеводороды. При перего нке бензинов бензол (т. кип. 80,2° С) концентрируется во фракциях, кипящих. при 71—75° С, а толуол (т. кип. 110,6° С) концентрируется во фракции с температурой кипения ЮГ С. [c.173]

    Процесс, описанный в патенте [5], позволяет проводить окисление циклогексана, полученного из нефти и содержащего значительные количества примесей. Основное усовершенствование заключается в возможности проводить окисление циклогексана при непрерывной азеотропной отгонке образующейся в реакции воды. Смесь, выгруженную из реактора, подвергают перегонке с паром. Головной погон, содержащий углеводороды, промывают водой и подвергают азеотропной перегонке для удаления бензола. Таким образом удается проводить окисление даже сильно загрязненного циклогексана в относительно мягких условиях. [c.280]

    Процессы азеотропной и экстрактивной ректификации почти никогда не используются самостоятельно, а являются стадиями технологических процессов разделения смесей. Естественно, поэтому, что эффективность и показатели процессов азеотропной и экстрактивной ректификации в большой степени зависят от показателей предшествующих и последующих стадий. Так, для успешного выделения путем азеотропной и экстрактивной ректификации отдельных веществ из многокомпонентных смесей, например из смесей углеводородов, важнейшее значение имеет предварительное выделение узкой фракции, являющейся в указанных процессах исходной смесью. Состав этой функции определяется требованиями к целевому продукту, составом исходной смеси и особенностями процесса азеотропной и экстрактивной ректификации. Так, экстрактивная ректификация широко применяется для выделения ароматических углеводородов из природных смесей. Последние, кроме ароматических, содержат парафиновые и нафтеновые углеводороды, отгоняющиеся при экстрактивной ректификации в виде дистиллата. Наличие этих соединений с температурами, превышающими температуру кипения ароматического углеводорода, затрудняет разделение. Такие соединения должны быть, поэтому, предварительно отделены, если возможно, путем обычной ректификации. В связи с тем, что ароматические углеводороды образуют положительные азеотропы с многими парафиновыми углеводородами, фракция, выделенная путем обычной ректификации и предназначенная для разделения путем экстрактивной ректификации, имеет интервал температур кипения ниже температуры кипения ароматического углеводорода. Так, например, для выделения толуола используется смесь с интервалом температур кипения 95—105° С [345], а для выделения бензола — с интервалом температур кипения 73—77° С [346]. Из этих фракций ароматические углеводороды выделяются путем экстрактивной ректификации с применением полярных веществ в качестве разделяющих агентов. [c.318]

    Нефтеперерабатываюш,ая промышленность помимо производства моторных топлив, смазочных масел и других продуктов является важнейшим производителем сырья для органического синтеза. Например, из нефтяных фракций — катализатов риформинга получают индивидуальные ароматические углеводороды высокой степени чистоты. Обычной перегонкой, четкой ректификацией не удается вьщелить бензол из бензольной фракции 62—85 °С, толуол из толуольной фракции 85— 120 °С, технический ксилол (концентрат ксилолов) из фракции 120— 145 °С с удовлетворительной степенью чистоты, так как названные углеводороды имеют близкие температуры кипения и образуют азеотропные (нераздельнокипяш,ие) смеси с парафиновыми и нафтеновыми углеводородами, входящими в состав сырьевой фракции. Например, бензол ( кип 80,1 °С) и циклогексан (/кип 80,6 °С) образуют азеотроп-ную смесь с температурой кипения 75,8 °С и содержанием бензола в этой смеси 51,8 % (мае.). Толуол (/кип 110,6 °С) и 1, 2, 4-триметилцик-лопентан ( кип = 109,3 °С) образуют азеотропную смесь с / ип = 107,0 °С и содержанием толуола в ней 39 % (мае.) и др. [c.71]

    Бензол СбНб — важнейший представитель ароматических углеводородов. Это легкая бесцветная жидкость со специфическим запахом, малорастворима в воде (образует с ней азеотропную смесь). Бензол является сырьем для производства различных химических продуктов нитробензола, хлорбензола, анилина, фенола, стирола и др. [c.271]

    Для выделения ароматич углеводородов из жидких про дуктов используют спец методы, т к парафиновые и нафтеновые углеводороды близки по т-рам кипения к ароматич углеводородам и образуют с ними азеотропные смеси Бензол, толуол и смесь ксилолов выделяют жидкостной экстракцией с помощью полиэтиленгликолей или сульфола-на, индивидуальные углеводороды Св и С,-адсорбцией и кристаллизацией (м- и и-ксилолы) или сверхчеткой ректификацией (этилбензол, о-ксилол, 1,2,4-триметилбензол) Нек рые св-ва указанных углеводородов приведены в табл 5 [c.347]

    В СССР разработана технология регенерации активных углей после очистки сточных вод от дихлор бутадиен а и других хлорпроизводных непредельных углеводородов экстракцией этих соединений ацетоном. В ряде случаев замечено, что смешанные растворители более эффективны при экстракционной регенерации адсорбентов, чем индивидуальные жидкости. Так, для регенерации активного угля, насыщенного анионными поверхностно-активными веществами, наиболее эффективна водно— метанольная смесь для регенерации угля, насыщенного нитро-анилипом, эффективной оказалась азеотропная смесь н-пропи-лового спирта и воды [14]. В японском патенте для регенерации активного угля после очистки сточных вод производства хлоро-пренового каучука предложено применять смесь метанола или ацетона с бензолом, циклогексаном или дихлорэтаном [15]. [c.193]

    Азеотропная перегонка. Если экстракционная перегонка применяется для разделения иарафивовых углеводородов, то азеот-ропную перегонку используют для разделения ароматических углеводородов. Процесс идет также в присутствии третьего компонента, образующего с одним или несколькими компонентами разделяемой смеси азеотропную смесь. Растворитель может образовывать с компонентами азеотропные смеси с минимумом или максимумом на кривой кипения. При разделении бинарной смеси могут получаться азеотропные смеси с минимум температур кипения, но один из азеотропов обычно кипит ниже, чем второй. Растворитель может образовывать гомогенные азеотропные смеси (полная взаимная растворимость растворителя и выделяемого компонента смеси) и гетерогенные азеотропы. Примером последнего служит тройной азеотроп этанол—вода-бензол с Гкип- = 64,9°С (74,1% бензола, 18,5% спирта и 7,4% воды), образующийся при обезвоживании этилового спирта бензолом. [c.55]

    Метилэтилкетон - бесцветная прозрачная щдкость с неприятным запахом растворим в воде, бензоле, толуоле и спирте. Растворяющая способность в отношении углеводородов масел более высокая, чем у ацетона. При 20 °С в метилэтилкетоне растворяется воды с водой образует азеотропную смесь. Действие метилэтилкетона на организм человека аналогично действию ацетона. При совместном воздействии с ацетоном отравление усиливается, при этом наблюдаются слезотечение, головные боли и обморочное состояние, соцровоздающееся судорогами. [c.58]

    Полное разделение двух летучих веществ удается при помощи не очень эффективной колонны лищь тогда, когда на кривой кипения смеси отсутствует максимум или минимум [567—570] , который часто наблюдается у смеси многих неорганических веществ и даже у смеси углеводородов. В таких случаях, помимо азеотропной смеси, можно получить только один компонент в чистом виде. Однако иногда можно создать более благоприятные предварительные условия для разделения веществ за счет добавления подходящего третьего компонента. В системе С2Н5ОН (т. кип. 78,30°) — Н2О, в которой образуется азеотропная смесь, содержащая 4,43% HgO (т. кип. 78,15°), после добавления бензола вначале отгоняется третичная азеотропная смесь (т. кип. 64,85°) таким путем (или же за счет добавления трихлорэтилена) можно легко удалить всю Н2О азеотропная перегонка), последующее отделение добавленного вещества не вызывает затруднений. Кроме того, при образовании азеотропной смеси можно использовать перегонку при пониженном давлении так, С2Н5ОН и Н2О не образуют азеотропной смеси при давлении ниже 75 мм рт. ст. В некоторых случаях эффективного разделения можно достигнуть при помощи особого метода экстрактивной перегонки [572]. Любой труднолетучий экстрагент, смешивающийся при температуре перегонки во всех соотношениях с другими компонентами, вводят в процессе перегонки в колонну сверху. Благодаря этому соотношение давления паров внутри ректификационной колонны смещается в благоприятную сторону, а сам экстрагент в большинстве случаев отделяют повторной перегонкой часто также при охлаждении происходит расслаивание. В некоторых случаях азеотропные смеси можно разделить дробной кристаллизацией, методами адсорбции или термодиффузии [573]. [c.482]

    Исследование смеси муравьиной, уксусной, пропионовой, масляной и изомасляной кислот показало, что первые две (сначала муравьиная, а затем уксусная) образуют азеотропную смесь с бензолом. Пропионовая и масляная кислоты, кипящие при значительно более высокой температуре, чем бензол, образуют азеотропную смесь не с бензолом, а с толуолом и ксилолом 132], Бинарные азеотропные смеси кислота—углеводород очень чувствительны к влаге. Поэтому перед анализом смеси кислот необходимо переводить в соли и затем сухие соли разлагать сухим бензольным раствором толуолсульфокислоты. [c.138]

    Можно предположить, что величины азеотропных областей компонента, образующего бинарные положительные азеотропы с различными гомологическими рядами, будут отличаться друг от друга. Ранее существовало мнение, что изомеры, принадлежащие к одному и тому же гомологическому ряду, не способны образовывать бинарные азеотропы друг с другом. Однако Калингерт и Войцеховский [67] доказали, что два изомерных углеводорода, незначительно отличающихся по температуре кипения, могут образовать отрицательный азеотроп, существующий в очень узком интервале температур и давлений. С изменением давления смесь становится гомо-зеотропной. Азеотропные области, образованные бензолом с парафиновыми и нафтеновыми углеводородами, больше азеотропных [c.52]

    Гийо впервые показал на примере бензола, что сульфирование можно осуществить полностью, если применять повторное пропускание углеводорода в паровой фазе через кислоту, удаляя таким образом воду, образующуюся во время сульфирования в виде азеотропной смеси. В этохМ методе перегонки с использованием парциального давления сочетаются превосходные выходы с простотой операций, поэтому он стал господствующим промышленным методом сульфирования таких стойких низкокипящих ароматических углеводородов, как бензол, толуол и ксилолы. Метод можно распространить также и на более высококипящие соединения путем добавления соответствующего инертного низкокипящего вещества, образующего смесь, например четыреххлористый углерод или лигроин. Воду можно также удалять при помощи инертного газа с применением вакуума или же с использованием химической реакции с веществами типа ВГз, который обпазует стойкий гидрат. [c.520]

    При производстве ксилолов как из каменноугольного, так и из нефтяного сырья первоначально получают сложную смесь продуктов, в которой кроме ксилолов присутствуют ароматические, циклоалкановые и парафиновые углеводороды. На первой стадии выделяют смесь, состоящую из трех изомеров ксилола и этилбензола,—технический ксилол. При переработке каменноугольного сырого бензола, содержащего очень мало парафиновых и циклоалкановых углеводородов, технический ксилол выделяют простой ректификацией. Из продуктов же переработки нефти, обладающих сложным компонентным составом, ксилольную фракцию выделяют ректификацией в присутствии третьего компонента (экстрактивная или азеотропная ректификация) или жидкостной экстракцией. Про- [c.247]

    Процесс ведется таким образом, чтобы конверсия циклогексана за проход составляла 15—20%, при этом выход смеси циклогексанола и циклогексанона достигает 60—75%, а суммарный выход продуктов (включая X-масло), способных при дальнейшем окислении азотной кислотой превращаться в адипиновую кислоту, достигает 80—85% на превращенный цикло-гексап. При увеличении конверсии выход этих продуктов снижается. Циклогексан, отгоняющийся в процессе окисления, ноступает в конденсатор 5 и перед возвращением в автоклав проходит через сепаратор 4, где отделяется от воды, образовавшейся в процессе реакции, так как накопление воды в системе тормозит реакции окисления. Реакционная смесь из автоклавов поступает в ректификационную колонну 6, с верха которой отводится неокисленный циклогексан вместе с сопутствующими ему углеводородными примесями и летучими продуктами глубокого окислення (главным образом муравьиная и уксусная кислоты). Органические кислоты удаляются из смеси нри промывке водой в скруббере 7, после чего циклогексан ректифицируется в колонне 8, где в виде азеотропной смеси от него отделяются бензол и другие углеводородные примеси. Этот способ очистки позволяет применять в качестве сырья циклогексан нефтяного происхождения, в котором, кроме бензола, содержатся метилциклопентан, к-гексан и другие углеводороды, накопление которых в смеси при рециркуляции циклогексана ухудшает условия окисления. Освобожденный от этих примесей циклогексан возвращается в цикл окисления. [c.681]


Смотреть страницы где упоминается термин Азеотропные смеси, бензол углеводороды: [c.148]    [c.206]    [c.13]    [c.49]    [c.148]    [c.282]    [c.164]    [c.206]    [c.96]    [c.319]    [c.438]    [c.103]   
Нефтехимическая технология (1963) -- [ c.147 ]




ПОИСК





Смотрите так же термины и статьи:

Азеотропная смесь

Смесь азеотропная Азеотропные рас

бензола углеводородов



© 2025 chem21.info Реклама на сайте