Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Азеотропное понижение

    Перегонка под вакуумом применяется с целью снижения температуры кипения веществ. Это бывает необходимо в тех случаях, когда соединения разлагаются в процессе их перегонки при атмосферном давлении или их температура кипения выше 200°С. Фракционная перегонка при пониженном давлении нередко позволяет добиться лучшей очистки. Объясняется это тем, что снижение температуры кипения с понижением давления у веществ из различных классов, например у кислот и эфиров, спиртов и углеводородов, происходит не строго пропорционально. Поэтому в вакууме разница в температурах кипения компонентов разделяемой смеси может оказаться даже большей, чем при атмосферном давлении. Фракционная вакуум-перегонка может оказаться полезной также при разделении некоторых азеотропных смесей. При обычном давлении этиловый спирт как [c.147]


    Если разделяемая смесь образует при атмосферном давлении азеотроп, то с понижением давления азеотропная смесь обогащается низкокипящим компонентом и при некотором остаточном давлении азеотроп может исчезнуть . Например, смесь этанол— вода при 70 мм рт.ст. азеотропа не образует (см. разд. 6.2.1). Следовательно, вакуумной ректификацией при давлении ниже 70 мм рт. ст. можно получать абсолютно чистый спирт без примесей Следует обратить внимание на то, что при таком разрежении температура кипения спирта сравнительно низка (примерно [c.263]

    Н1а основании анализа данных о понижении температур кипения азеотропных смесей оказывается возможным выбирать разделяющий агент даже для систем, компоненты которых являются членами одного гомологического ряда. Примером такой системы является система этиловый изопропиловый спирт. Несмотря на незначительное различие температур кипения этих веществ, их азеотропы с водой довольно значительно отличаются по температурам кипения. Для изопропилового спирта АГ равно 82,5—80,38 = 2,12°, тогда как для этилового спирта АГ, всего 78,3—78,15=0,15°. Это показывает, что в системе этанол— [c.59]

    Под азеотропным понижением понимается разница между температурой конденсации нижекипящего вещества (входящего в состав положительного азеотропа) и температурой конденсации азеотропа. Азеотропное повышение относится к случаю отрицательных азеотропов и выражается разницей между температурой конденсации азеотропа и температурой конденсации вышекипящего компонента, входящего в состав отрицательного азеотропа, [c.65]

Рис. 19. Влияние разности температур Рис. 20, Зависимость понижения темпе-кинения Л углеводорода парафинового ратуры кипения <5 смесей толуола с ряда и этилового спирта на концентрацию первичными спиртами от разности тем-углеводорода в азеотропной смеси. ператур кипения Л толуола и разде- Рис. 19. Влияние <a href="/info/199458">разности температур</a> Рис. 20, Зависимость понижения темпе-кинения Л <a href="/info/11721">углеводорода парафинового</a> ратуры кипения <5 смесей толуола с <a href="/info/613980">ряда</a> и <a href="/info/7424">этилового спирта</a> на концентрацию <a href="/info/49835">первичными спиртами</a> от разности тем-<a href="/info/1354">углеводорода</a> в <a href="/info/48049">азеотропной</a> смеси. ператур кипения Л толуола и разде-
    Азеотропные смеси, характеризующиеся вышеописанным характером изобар, носят название касательных азеотропов. Очевидно, что приведенный случай является идеальным. Практически азеотропы бывают касательными только тогда, когда азеотропное понижение составляет 0,1—0,2° они содержат обычно 2—6% другого вещества (хотя иногда и значительно больше) каждый из таких азеотропов граничит с одной стороны с зеотропом, а с другой стороны—с азеотропом, образованным ближайшими гомологами с компонентом А. Эти последние системы носят название почти касательных зеотропа и азеотропа (рис. 40). [c.65]


    Тот факт, что изобары носят характер касательных, объясняется тем, что азеотропное понижение (или повышение) для соответствующих азеотропов очень мало и состав соответствующих касательных азео-тропов очень ненамного разнится от чистых веществ А или Н . [c.65]

    Под азеотропным понижением понимается разница между температурой конденсации нижекипящего вещества (входящего в состав положительного азеотропа) и температурой конденсации азеотропа. Азео- [c.64]

    По затрате энергии более целесообразен вариант работы под вакуумом спиртовой колонны (рис. 127, в) с обогревом ее теплом конденсации спирто-водного пара, выходящего из бражной колонны. Работа спиртовой колонны под вакуумом теоретически оправдана тем, что с понижением давления на кривой фазового равновесия азеотропная точка сдвигается вправо (см. рис. 90), а следовательно, для достижения заданной крепости спирта потребуется или меньшее число тарелок в концентрационной части колонны, или работа колонны при меньшем удельном расходе пара. Из спиртовой колонны необходимо отводить значительно меньше неконденсирующихся газов, чем из бражной (меньше потребуется энергии на их отвод). К достоинствам данного варианта относится и более высокий потенциал пара, обогревающего колонну, работающую под ваку.умом. Температура конденсации греющего пара, выходящего из бражной колонны, равна 93°С, впоследствии она снижается до 82°С (при конденсации), в то время как пар, выходящий из спиртовой колонны, имеет температуру 78°С. Следовательно, поверхность теплопередачи испарителя для обогрева спиртовой колонны будет меньше, чем испарителя-парогенератора для обогрева бражной колонны. [c.344]

    Фурфурол из раствора экстракта регенерируется в четыре ступени. Раствор экстракта из отстойника 13 подается через теплообменники 8, 23 и 21 в змеевики трубчатой печи 20, откуда он направляется в испарительную колонну 24 для отгонки влажного фурфурола, работающую при давлении 0,22 МПа. В этой колонне испаряются до 30 % (масс.) фурфурола и вся влага, содержащаяся в экстрактном растворе. Пары фурфурола и воды, выходящие из колонны 24 сверху, конденсируются в теплообменнике 23, и образующийся конденсат поступает в сушильную колонну 26 для обезвоживания фурфурола. Вверху этой колонны поддерживается температура кипения азеотропной смеси фурфурол — вода при рабочем давлении в колонне (при 0,15 МПа около ПО °С). В нижней части отгонной зоны колонны 26, под нижней тарелкой и в кубовой ее части поддерживается температура конденсации паров фурфурола при рабочем давлении. При понижении температуры в нижней части колонны 26 растворитель обводняется, и качество рафината ухудшается. [c.75]

Рис. 23. Соотношение между разностью температур кипения Л и понижением температуры кипения й азеотропной смеси. Рис. 23. <a href="/info/790392">Соотношение между</a> <a href="/info/199458">разностью температур</a> кипения Л и <a href="/info/485797">понижением температуры кипения</a> й <a href="/info/48049">азеотропной</a> смеси.
    Азеотропные растворы могут быть в отдельных случаях разделены на чистые компоненты химическими методами. Возможно улучшить разделение с помош,ью перегонки при пониженном (или повышенном) давлении. [c.204]

    Если силы притяжения между неодинаковыми молекулами больше, чем между одинаковыми, то процесс растворения является экзотермическим. При этом вследствие повышения растворимости компонента в смеси энтальпия испарения раствора превышает энтальпию испарения чистого компонента. Это затрудняет образование паров и вызывает понижение их давления. На рис. 23 (ряд I, тип 5) в качестве примера указаны смеси с азеотропной точкой (с минимумом давления паров). [c.74]

    Трудность концентрирования индивидуальных компонентов в одну фракцию определяется сложным составом смолы, образованием многочисленных азеотропных смесей, что и обращает смолу в своеобразную непрерывную систему, четкое разделение которой оказывается затруднительным. Как показано в работе [50], присутствие фенолов приводит к образованию положительных азеотропных смесей с нафталином, причем содержание нафталина в последних существенно увеличивается при понижении суммарного давления компонентов этой системы. Так, при давлении 98 кПа в азеотропной смеси о-крезол — нафталин содержится 2,5% наф- [c.164]

    Азеотропные смеси не являются химическими соединениями. Это подтверждается тем, что состав азеотропной смеси зависит от давления, а следовательно, не соблюдается обязательный для каждого химического соединения закон постоянства состава. Так, например, смесь этиловый спирт - вода при давлении 101,3 кПа образует азеотроп, содержащий 88,4 мол.% спирта. При понижении давления концентрация спирта в азеотропе увеличивается, а при абсолютном давлении ниже 12 кПа азеотропная смесь вовсе не образуется. [c.17]

    Физические соображения о выборе разделяющего агента, а) Темп е-ратура кипения разделяющего агента. Цель добавления разделяющего агента к смеси состоит в облегчении очистки или разделения смеси посредством перегонки. Образующаяся азеотропная смесь долллна обладать температурой кипения, настолько отличающейся от температуры кипения других компонентов системы, чтобы разделение посредством перегонки было возможным. В то же время желательно, чтобы в азеотропной смеси содержалось максимальное количество продукта на единицу веса испаряющегося разделяющего агента. На рис. 19 можно видеть, что концентрация углеводорода в азеотропной смеси будет больше, когда применяется высококипящий разделяющий агент. С другой стороны, из рис. 20 видно, что максимальное понижение температуры кипения достигается при применении низкокипящего разделяющего агента [6]. Для оценки относительной роли этих двух факторов необходимо экономическое сопоставление капитальных затрат и эксплуатационных расходов.  [c.124]


    Результаты подобных отсчетов можно перенести на диаграммы в других системах координат (рис. У-112), например на диаграмму зависимости между составом адсорбированной фазы (У) п газовой фазы (X). Последняя диаграмма аналогична диаграмме для дистилляции. Здесь наблюдаются и другие аналогии, например, понижение давления (Рз — Р1) улучшает селективность или увеличивает разность У — X. Имеется также аналогия с диаграммой азеотропной смеси. [c.458]

    Выбор добавок ограничен следующими условиями. Чтобы разница в температурах кипения между азеотропными смесями или между азеотропной смесью и углеводородом, не входящим в ее состав, была достаточной для их разделения, добавляемое вещество должно кипеть на О—30° ниже углеводорода, подлежащего выделению. Это вещество должно давать большие отклонения от закона Рауля и образовывать азеотропные смеси с минимальной точкой кипения с одним или с большим числом углеводородов, подлежащих выделению. Кроме того, добавляемое вещество должно растворяться в углеводороде при температуре кипения смеси или на несколько градусов ниже оно также должно быть доступным по стоимости, стабильным, химически инертным и легко отделяющимся от углеводородов, с которыми образует азеотропную смесь. Обычно это отделение происходит либо в результате понижения взаимных растворимостей при низких температурах, что приводит к расслоению дистиллята на две фазы, либо в результате отмывки этого вещества водой. [c.36]

    Из рис. VII. 5, а видно, что, в соответствии с первым законом Коновалова, пар и в этом случае обогащен по сравнению с жидкостью тем компонентом, добавление которого к раствору повышает общее давление пара (понижает температуру кипения). Например, добавление СЗг к ацетону повышает общее давление пара и понижает температуру кипения раствора вплоть до содержания СЗг, отвечающего экстремальной точке с. В этой области концентраций пар по сравнению с жидкостью обогащен сероуглеродом. Дальнейшее добавление С5г вызывает понижение общего давления пара (повышение точки кипения), поэтому пар в области концентраций между азеотропной точкой с и чистым сероуглеродом по сравнению с жидкостью обогащен ацетоном. К этому же выводу можно прийти, рассматривая добавление ацетона к сероуглероду. В азеотропной точке с состав жидкости равен составу равновесного с ней пара. [c.94]

    Точки / и 2 расположены по разные стороны минимума кривых, характеризующего азеотропный состав. Взаимное расположение кривых пара и жидкости в левой и правой частях диаграммы противоположно. Слева от азеотропной точки пар богаче жидкости компонентом В, а справа от нее он содержит меньше В, чем жидкость. Это согласуется с первым законом Коновалова, так как понижение температур кипения происходит в левой части диаграммы с ростом, а в правой с уменьшением дсв. [c.194]

    Опубликованные в литературе данные указывают, что некоторые азеотропные смеси удается весьма просто разделить перегонкой под пониженным давлением. Так, сообщается [30], что полное разделение этилового спирта и воды возможно осуществить перегонкой при остаточном давлении 70 мм рт. ст. Отмечено, однако, что полное разделение перегонкой под пониженным давлением трудно осуществимо в условиях промышленной установки. [c.126]

    Необходимым условием азеотропной перегонки является наличие значительной разницы между температурами кипения азеотропа и других компонентов смеси. Для этого температура кипения добавляемой жидкости должна быть как можно ближе к температуре кипения того компонента смеси, который хотят выделить. Например, при добавлении метанола или этанола к углеводородам парафинового ряда образуется азеотроп, кипящий на 16° ниже температуры кипения чистых углеводородов при условии, если температура кипения спирта практически одинакова с температурой кипения углеводородов. С увеличением разницы в температурах кипения компонентов азеотропа понижение температуры кипения азеотропной смеси становится меньше. При разнице в температурах кипения спирта и углеводородов в 30° температура кипения азеотропа снижается лишь на 5° ([19], стр. 363). [c.282]

    Азеотропные смеси, характеризующиеся выщеописанным характером изобар, носят название касательных азеотропов. Очевидно, что приведенный случай является идеальным. Практически азеотропы бывают касательными только тогда, когда азеотропное понижение составляет 0,1— [c.65]

    Известно, что составы азеотропов зависят от условий существования системы, в частности от давления. При изменении давления в многокомпонентных системах происходит изменение положения границ областей ректификации. На основе этого явления разработан принцип перераспределения полей концентрации между областями ректификации [29], который может использоваться для разделения многокомпонентных азеотропных смесей ректификацией без введения каких-либо вспомогательных веществ. Это же явление, как следует из рассмотренных примеров I и III, может использоваться для увеличения предельнд возможных степеней превращений реагентов, образующих азеотропные смеси, в реакционно-ректификационном процессе. В самом деле, если, например, при повышенном (пониженном), по сравнению с атмосферным, рабочем давлении в аппарате состав азеотропа (рис, 40,6) будет соответствовать более высокому содержанию компонента С, то линия предельных составов псевдоисходных смесей ВМ (рис. 40, в) займет положение, соответствующее более высокой предельной конверсии компонента А, [c.208]

    В общем случае понижение давления сказывается таким образом, что азеотропная смесь обогащается легкокипящим компонентом. Во многих случаях в конце концов при некотором вакууме, азеотропный состав исчезает. В качестве примера можно указать на разделение смесей этанол—вода и вода—фенол (рис. 226). Вакуумной перегонкой при 70 мм рт. ст. получают абсолютный спирт и без разделяющего агента. Азеотропная точка на кривой равновесия смеси вода—фенол исчезает при остаточном давлении 32 мм рт. ст. Шнайнкер и Пересслени [45] установили, что азеотропная точка смещается следующим образом азеотроп смеси муравьиная кислота—вода при 55 мм рт. ст. содержит 66% (масс.) муравьиной кислоты, а при 200 мм рт. ст. — 72% (масс.) кислоты азеотроп смеси бутанол—бутилацетат при 50 мм рт. ст. содержит 37% (мол.) бутанола, а при 760 мм рт. ст. — 79% (мол.) спирта. [c.306]

    Применение азеотропной перегонки. Селективный разделяющий агент определяется как вещество, образующее азеотропные смеси с ограниченным числом компонентов системы. Неселектииные разделяющие агенты образуют азеотропные смесн со всеми компонентами системы. При разделении путем азеотропной перегонки селективные разделяющие апшты применяются реже, чем неселективБые. Обычно разделяющий агент образует азеотропные смеси со всеми компонентами разделяемой смеси, температуры кипения которых близки к температуре кипения разделяющего агента. Это можно видеть из табл. 25, в которой дан перечень разделяющих агентов, применяющихся для разделения углеводородов. Метанол, например, образует азеотропные смеси с углеводородами, температура кипения которых ниже температуры кипения метанола на 70°, и с углеводородами, температура кипения которых выше температуры кипения метанола на 55°, а также со всеми углеводородами с промежуточной температурой кипения. Максимальное понижение температуры кипения получается в том случае, когда температура кипения разделяющего агента ра]ша температуре кипения вещества, подлежащего отделению [10]. Это показано иа рис. 23. [c.127]

    Так же распадается HNOз и при нагреоанни. Азотную кислоту можно перегонять (без- разложения) только при пониженном давлении (указанная выше т. кил. при атмосферном давлении найдена экстраполяцией). С водой ННОз образует азеотропную смесь, содержащую 68,4% HNOз и кипящую при 121,9 °С (прн 101 кПа). [c.409]

    При значительном различии температур кипения компонентов может быть рекомендован следующий метод выбора. Подбирается система из двух близкокипящих компонентов, аналогичная заданной. Аналогия должна быть сохранена в характере функциональных групп, поэтому новая система должна подбираться из гомологических рядов разделяемь1х компонентов. К таким образом выбранным компонентам подбирается вещество, образующее азеотропную смесь с минимумом температуры кипения с каждым из них, но с различной величиной понижения температуры кипения. В качестве разделяющего агента для первоначальной смеси принимается либо выбранное вещество, либо его гомолог. [c.58]

    Рассмотрение свойств систем, отвосящихся к различным группам, показывает, что в качестве разделяющих агентов для процессов азеотропной ректификации могут примевяться вещества, дающие с отгоняемыми компонентами системы второй и третьей группы. В первом случае расслаивание разделяющего агента и отгоняемого компонента может производиться при температуре кипения гетероазеотропа. Если разделяющий агент дает с отгоняемым компонентом систему третьей группы, то дистиллат представляет собой гомогенный азеотроп, разделение которого путем расслаивания возможно лишь за счет использования уменьшения взаимной растворимости с понижением температуры. В этом случае конденсат пара, выходящего из верха колонны, необходимо подвергать дополнительному охлаждению. [c.103]

    Для выявления возможности обойти азеотроиную точку применением давления, повышенного или пониженного по сравнению с атмосферным, весьма важно знать влияние давления на состав азеотропной смеси. В некоторых слу- [c.123]

    Для выделения из смеси о-ксилола и особенно этилбензола требуется сверхчеткая ректификация о-ксилол можйо выделять также азеотропной и экстрактивной перегонкой. Выделение л-ксило-ла основано на разнице в температуре его плавления его обьино выделяют кристаллизацией. При выделении п-ксилола из сырых ксилолов отбор от потенциала не превышает 55%. Понижение остаточного содержания о-ксилола в смеси при неизменной температуре кристаллизации приводит к увеличению его отбора от потенциала так, при отборе 70% о-ксилола (в сырье для получения п-ксилола его остается 6—8%) и кристаллизации при минус 68— минус 70 °С можно увеличить отбор п-ксилола до 65%. При дальнейшем углублении отбора о-ксилола можно повысить отбор п-ксилола (даже до 75% от потенциала) при той же температуре кристаллизации. Расчеты показывают, что для отделения (при высоком выходе) 98% о-ксилола от других компонентов достаточно в колонне иметь 150 тарелок. Отделение 99% этилбензола является более сложной задачей — для этого требуется колонна с 350 тарелками. [c.194]

    Если смесь образует при атмосферном давлении азеотроп, то с понижением давления азеотропная смесь обогащается легкокипя-щим компонентом. Можно достичь и такого вакуума, при котором азеотроп исчезнет ). Например, смесь этиловый спирт — вода при 70 мм рт. ст. не образует азеотропа (см. главу 6.21).Вакуумной ректификацией при 70 мм рт. ст. можно получить абсолютный спирт без добавки посторонних веществ. Но при этом температура кипения спирта сравнительно низка — около 28 . Поэтому выбор вакуума зависит также от того, какие имеются охлаждающие средства для обеспечения конденсации паров. [c.293]

    До разделения азеотропной смеси рекомендуется снача.та исследовать, в какой степени изменение давления может оказать влияние на фазовое равновесие. В большинстве случаев понижение давления делает азеотропную смесь более богатой нижекиня-1ЦИМ компонентом. Во многих случаях нрп определенном вакууме азеотропная точка исчезает. В качестве примера можно назвать смеси этиловый спирт — вода п вода — фенол (рис. 226). Вакуумной ректификацией при 70 мм, рт. ст. получают абсолютный спирт без добавки постороннего вещества. Азеотропная точка для смеси вода — фенол исчезает при 32 мм рт. ст. (см. главу 5.41). Но можно также привести случаи, когда азеотропная точка исчезает с повышением давления. [c.338]

    При сушке твердых веществ, так же как и при осушении жидкостей, можно удалять воду в виде одной из составляющих низкокипящей азеотропной смеси. Аткинс и Вильсон [6] описали, например, высушивание некоторых сахаров отгонкой воды со спиртом и бензолом. Другим примером такого способа осушения твердых веществ является удаление кристаллизационной воды из щавелевой кислоты путем отгонки воды с четыреххлористым углеродом [14]. Азеотропную отгонку можно проводить и при пониженном давлении. Так, термически нестойкие вещества сушат отгонкой воды с ксилолом при 20—25 и давлении 9—12 мм рт. ст. [37]. [c.588]


Смотреть страницы где упоминается термин Азеотропное понижение: [c.64]    [c.123]    [c.148]    [c.276]    [c.54]    [c.326]    [c.461]    [c.214]   
Препаративная органическая химия (1959) -- [ c.65 ]

Препаративная органическая химия (1959) -- [ c.65 ]




ПОИСК







© 2025 chem21.info Реклама на сайте