Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Орошение степень

    При равномерном расположении круговых зон орошения степень смоченности одного элемента и всей сетки распределения зон орошения можно оценить показателем ци выражающим отношение несмоченной поверхности ко всей иоверхности 5  [c.54]

    В которых нагревается за счет тепла регенерированного N-МП, и поступает в десорбционную насадочную колонну 3. При подогреве до температуры 100 °С из N-МП десорбирует ВХ и влага, которые отводятся в коллектор 4, пары влаги конденсируются, конденсат отводится на стадию очистки сточных вод, а газообразный ВХ направляется в газгольдер. Регенерированный абсорбент после обмена теплом с насыщенным N-МП возвращается в сборник 17 н далее на абсорбцию. Винилхлорид после регенерации адсорбента паром отводится в виде газовой смеси через фазоразделитель 8 и конденсатор 7 на смешение с Исходными абгазами, а конденсат отводится на стадию очистки сточных вод. Насыщение растворителя ВХ составляет от 10 до 29% (мае.) в зависимости от режима полимеризации и расхода N-МП на орошение. Степень десорбции ВХ из N-МП в среднем составляет 93%, остаточное содержание ВХ в абсорбенте не превышает 2,5% (мае.). [c.155]


    Как видно из этой таблицы, при орошении 1,5 л1м газ очищается только на 29%. С увеличением плотности орошения степень очистки повышается, достигая 78,5% при 6,4 л м . [c.213]

    При выборе схемы орошения в колонне, т. е. расходов острого и промежуточных циркуляционных орошений (ПЦО) и доли отбо-за тепла с каждым из них, учитывают одновременно влияние 1Ц0 на четкость ректификации, степень регенерации тепла и размеры аппаратов. Так, при увеличении четкости разделения большее количество тепла необходимо отводить острым орошением, для увеличения же степени регенерации тепла следует развивать в основном нижние циркуляционные орошения и, наконец, для умеренного и равномерного распределения нагрузок по высоте колонны необходимо перераспределять тепло между всеми потоками орошения. [c.166]

    Согласно правилу фаз, трехкомпонентная двухфазная система, разделяющаяся в конденсаторе колонны на находящиеся в равновесии пары ректификата в смеси с водяным паром и жидкий остаток, т. е. орошение, обладает тремя степенями свободы. Любая совокупность любых трех интенсивных свойств рассматриваемой системы характеризует какое-то одно, вполне определенное и единственное равновесное состояние. Интенсивными свойствами этой системы, которыми может задаваться проектировщик, рассчитывающий колонну, являются температура д системы, составы ее равновесных жидкой и паровой г/д фаз, суммарное давление р, развиваемое компонентами системы, парциальное давление рг водяного пара или парциальное давление р углеводородов в паровой фазе, относительное количество водяного нара 2/0 и т. д. [c.237]

    Вывод расчетных уравнений режима минимального орошения можно провести по-разному, но в конечном счете задача сведется к нахождению граничных концентраций, определяемых на основе балансов тарелки питания при условии равновесия покидающих ее потоков, представляющих соответствующие фазы искомой ОПК. Отклонение этих граничных концентраций от значений, непосредственно совпадающих с составами сырья, является наиболее ярким показателем либо степени ненасыщенности сырья, либо процесса орошения отгонной колонны или кипячения нижней флегмы укрепляющей. [c.374]

    Степени свободы проектирования режима полного орошения [c.317]

    Сырье —фракция н. к. — 140°С (или н. к. — 180 С) — после подогрева в печи 4 до 150°С при степени испарения после подогрева 23% подается во фракционирующую колонну 5 блока вторичной перегонки. Пары фракции н. к. — 85 °С с верха колонны 5 поступают в конденсатор-холодильник 2. Фракция н. к, —85°С после охлаждения примерно до 35 °С собирается в емкости 1, откуда часть забирается насосом и возвращается в колонну 5 в качестве орошения, а избыток поступает в колонну 3 в качестве сырья. [c.162]


    Использование для теплообмена только острого орошения неэкономично, так как верхний продукт имеет сравнительно умеренную температуру. Применяя промежуточное циркуляционное орошение, рационально используют избыточное тепло колонны для подогрева нефти, при этом выравниваются нагрузки по высоте колонны, и это обеспечивает оптимальные условия ее работы. Выбирая схему орошения для работы колонны, следует учитывать степень регенерации тепла, влияние промежуточного орошения на четкость ректификации и размеры аппарата. [c.14]

    Анализ данных по растеканию (см. рис. 14, а и б) позволяет сделать важный вывод о существенном влиянии диаметра зоны ii ( и отдельно прироста радиуса орошения этой зоны ДУ при увеличении q и крупности колец) на степень смачивания поперечного сечения пасадки. Это видно из следующего. Если исходить нз условия равномерного заполнения поперечного сечения насадки аппарата (площадью Р) одинаковыми малыми зонами смачивания (площадью / каждая), т. е. пз условия F, мколонны диаметром О получим существенно различное число точек орошения А т в зависимости от величины АЯ. Так, в аппарате диаметром 0 = 6 м при расходе жидкости в одной точке 9т = 373 см 1с ( 7г=1,35 м ч) и соответствующих этому расходу значениях < 1 = 40 см (уложенные кольца, кривая I) и й 2=50 см (кольца навалом, кривая II) число точек орошения (и отверстий оросительного устройства) существенно различны и соответственно равны [c.48]

    Вопрос о минимально необходимом расходе жидкости (плотности орошения Ь) и степени ее диспергирования при орошении газоходов нуждается в исследовании. [c.216]

    При практически полной очистке природного газа от Н З (не более 20 мг/м ), Oj (не более 0,02 % мол.) и OS (следы), степень извлечения тиолов зависела от концентрации абсорбента (рис. 3.1), а также от удельного орошения и температуры. Оказалось, что она растет с увеличением L/G и снижается с повышением температуры абсорбции. Результаты анализа газов на содержание тиолов приведены в табл. 3.5. [c.60]

    Результаты сравнения импульсных кривых, полученных прямым гидродинамическим и индикаторным методами при разных степенях орошения, представлены на рис. 198. Характер кривых распределения позволяет сделать вывод о том, что введенный объем индикатора по мере его движения через слой насадки практически полностью обновляется за счет меченых частиц потока, т. е. практически все частицы прежде чем его покинуть, обязательно попадают в застойные зоны. [c.401]

    При расчете колонн ректификации необходимо составить материальный баланс колонны. Если разделению подлежит многокомпонентная смесь, то два крайних компонента (самый легкий и самый тяжелый) называются ключевыми компонентами. Легкий ключевой компонент имеет самую низкую темпе ратуру кипения и обычно является компонентом, который в заметных количествах содержится в продуктах низа колонны. Тяжелый ключевой компонент в заметных количествах содержится в дистиллятных потоках. Обычно ключевые компоненты имеют почти одинаковую летучесть. Их невозможно разделить полностью, поэтому задача состоит в том, чтобы определить степень разделения, которая может быть достигнута в колонне определенных размеров при соответствующем количестве орошения и нагрузке ребойлера. [c.139]

    При 0=0 и = 0 оперативные линии обеих частей колонны совпадают с прямой, проведенной иод углом 45 . Такой режим работы колонны известен под названием полный возврат флегмы или бесконечное орошение. При этом на каждой тарелке колонны достигается максимально возможное разделение. В колонне, работающей в режиме бесконечного орошения, высокая степень разделения достигается при минимальном числе тарелок. Этот режим и способ определения числа тарелок графически изображен на рис. 80, б. [c.146]

    При минимальном количестве орошения необходимо бесконечно большое число тарелок. Это значит, что на большей части этих тарелок степень разделения компонентов между жидкой и паровой фазами очень незначительна. Область, заключенная между оперативными линиями и кривой равновесия, называется зоной бесконечности. Особенностью этой зоны является то, что в ней состав, и, как следствие, температура не изменяются от тарелки к тарелке. Кроме того, переток жидкости с тарелки на тарелку также одинаков. Эти характеристики ректификационной и отпарной частей зоны бесконечности колонны имеют важное значение для математических методов расчета минимального количества орошения. В работах [52—54] рассматривается методика расчета от тарелки к тарелке с помощью ЭВМ. [c.147]

    Например, для dJd = 10 получаем = 0,27, а для dJd = = 30 имеем т, = 0,025. В первом случае степень перемешивания гпд настолько велика, что даже значительное повышение коэффициента неравномерности орошения мало снижает коэффициент использования насадочной колонны. Во втором случае такая зависимость не имеет места. Этот пример иллюстрирует эмпирическое правило, которое требует, чтобы отношение dJd , находилось в интервале от 10 до 30. Поэтому представительное значение числа теоретических ступеней разделения для колонны можно получить лишь при отношении dJd = 10 и при 1 0, [c.45]

    Для полноты поглощения фтора обычно устанавливают не-Ошлько последовательно расположенных по ходу газа абсорбционных башен с противоточной схемой орошения. В газах, выходящих из последнего абсорбционного аппарата, не должно оставаться больше 1 г м фтора. При применении достаточно интенсивного орошения степень поглощения фтора из газов достигает 98—99%. [c.344]


    Экспериментальная. проверка соответствия истинного меха-н,г1зма продольного рассеяния вещества той или иной математической модели треб ует, чтобы импульс трассера был идеальным. т. е. дельта-функцией. Это достигалось разбиванием стеклянной ампулы с трассером в распределителе орошения колонны. Объем ампулы составлял —0,25% к объему распределителя орошения. Степень приближения импульса к идеально му контролировалась по графику зависимости дисперсии о- от длины колонны х. Если найденная Экстраполяцией дисперсия в точке ввода трассера х = 0) получалась равной нулю, считалось, что импульс трассера достаточно близок к идеальному. [c.86]

    При постоянстве плотности орошения степень очистки воздуха растет с уме(нъшением его скорости. Оптимальной скоростью воздуха для данной установки является скорость, при которой достигается наилучшая очистка воздуха при максимальной плотности орошения, равной 22,8 м /м" час, т. е. V = 0,63 м/сек. [c.143]

    Для фиксирования определенного режима полного орошения ко.лопны, помимо закрепленного в начальных условиях числа теоретических тарелок N, необходимо назначить еще одну степень свободы, В качестве последней принимается либо относительное количество одного из продуктов колонны, либо концентрация произвольного компонента в исходном сырье. Тогда с помощью найденных по уравнениям (VIII.29) и (VIII.30) концентраций хщ и xr можно из материального баланса колонны (VIII.8) рассчитать полный состав хц сырья по всем компонентам. [c.363]

    Для получения индивидуальных фракций высокой степени чистоты (99,9 % об.) необходимо большое число ректификационных тарелок (до 200 и ныше). Поэтому сооружают две колонны, работающие по одноколонной схеме, причем подогреватель имеется только у первой колонны, а конденсатор-холодильник, сборник и ввод орошения — у второй. [c.60]

    В одном из патентов [38] описана схема, в которой адсорбент непрерывно пропускается в последовательном порядке через песколько зон контакта, В каждой зоне адсорбент находится во взвешенном состоянии. Адсорбент выпускается из зоны, отделяется от жидкости и затем вводится в следующую зону. Жидкость последовательно пропускается через зоны контакта в противоположном направлении. В каждой зоне по существу происходит процесс контакт шго взаимодействия, однако, чтобы достигалась желаемая степень разделения, число зон должею быть достаточно большим. Можно тaIiжe производить орошение. Анализ процесса можно выполнить при помощи диаграммы Мак-Кэба-Тиле, в которой состав внутрипоровой жидкости заменяется составом пара. Целесообразно пользоваться объемными, а не молярными концентрациями. Существенное различие при этом заключается в том, что рабочие линии процесса могут находиться в любом месте диаграммы, а линия, проходящая под углом 45° к осям, не имеет особого интереса. Число ступеней на такой диаграмме представляет собой теоретическое число зон контакта. Степень приближения к равновесию на каждой ступени экврхвалентна коэффициенту полезного действия тарелки. Можно определить среднее время, необходимое для достижения различных степеней приближения к равновесию, и рассчитать, каково должно быть оптимальное соотношение между числом ступеней и их емкостью. [c.164]

    Для проектирования и расчета оросительных устройств важна оценка влияния числа точек орошения насадки аппарата, основанная на измерении ко ффи-циентов массопередачи. Такие работы проводились исследователями обычно в колоннах небольшого диаметра. Наиболее полно этот вопрос изучен в работах Н. М. Жаворонкова и В. М. Рамма [17, 86]. В опытах определяли влияние числа точек орошения п на объемный коэффициент абсорбции Л г аммиака водой из смеси его с воздухом в колонне диаметром 500 мм, насаженной регулярно уложенными и засыпанными навалом кольцами Рашига разного размера. В этой же колонне проводили ()пыт1,1 но влиянию п при десорбции СОг из воды воздухом. Были испытаны регулярно уложенные слои насадки колец Рашига 50x50 мм высотой Я=1600 и 6000 мм. Для оценки эффективности числа точек п введен условный коэффициент ухудшения у, показывающий, насколько степень абсорбции при данном числе точек ниже, [c.50]

    Используя данные работы [17] по величине Лг при одноточечной подаче жидкости в центре торца иасадки и применяя для определения диаметра й (площади Р., потока, растекающегося внутри насадки) формулу (32), можно показать наличие важной для оценки эффективности скрубберного процесса связи между степенью смачивания т) поперечно расположенного внутри колонны сечения насадки и достигаемой величиной Кг (рис. 16). По осям ординат рис. 16 отложена величина 1], определяемая соотношением т] = — - (где неорошаемая поверхность сечения колонны Р ,,. = Р—Р — площадь поперечного сечения насадки) и значения Кг. Из рис. 16, а видно, что малой степени несмоченности т] поперечного сечеиия колонны (т) = 44—22%) соответствует повышенная интенсивность работы пасадки, причем минимальному г соответствуют максимальные значения Кг. Еще более четко этот эффект наблюдается при орошении регулярно уложенных колец (рис. 16,6), когда степень несмоченности поперечного сечения насадки из-за условий растекания намного больше (г] = 60—80%), а значения Кг при тех же расходах С орошающей жидкости намного меньше. Сравнение данных рис. 16, а и рис. 16,6 позволяет установить существенно важное для оценки работы оросителей на плохорастворимом газе [c.52]

    Для оценки качества распределения жидкости при полной смоченности торца пасадки и круговой симметрии плотности орошения L, наблюдаемой при орошении по кольцевым зонам, можно использовать предложенный Л. М. Ластовцевым коэффициент неравномерности и, показывающий степень отклонения значений L (на всей орошаемой поверхности или на ее отдельных участках) от идеального распределения жидкости [60]  [c.65]

    Основываясь на измеренных значениях (см. рис. 23), можно полагать, что при малых <7т имеет место стру1"1ный режим течения, при котором отдельные струйки покрывают лишь небольшую долю колец (это видно из смежного положения участков с разной интенсивностью орошения г )г и несмоченных участков). С возрастанием 9т наступает струйно-пленочный режим кольца, лежащие вблизи оси потока (см. рис. 14), покрытые жидкостной пленкой, дают увеличенные значения г )г в центральной области зоны смоченности, а степень ради- [c.73]

    При многоярусном расположении форсунок расстояние между ярусами / = 2,5-1-3,0 м можно считать достаточным, так как время полета каиель факела [128] при обычно применяемых напорах Я= 154-25 м прн этом достаточно велико. Так, ио данным работы [39] при абсорбции хорошо растворимых газов (Яf) время т практически полного насыщения одной капли диаметром 2 мм составляет 0,1 с. По данным работы [7], увеличение / между ярусами форсунок охладительных градирен более 3,5—4 м не дало заметного эффекта, так как основная доля передачи тепла приходится на участок формирования факела капель вблизи сопла форсунки. Применение сдвоенных форсунок в одном или нескольких ярусах орошения башни (см. рпс. 66, а, л одна форсунка факелом вверх, другая — факелом вниз) позволяет увеличить степень заполнения реакционного объема аииарата, причем междуярусное расстояние можно ие изменять, поскольку с учетом дивергенции траектории иолета каиель взаимного наложения факелов можно не опасаться. [c.208]

    Отметив, что данные Шулмэна и др. относятся к полной задержке, т. е. ко всей жидкости, находящейся в насадке, автор не указывает, что формула Баченэна обобщает результаты, относящиеся лишь к динамической задержке, т. е. той части жидкости, которая находится в движении и, в частности, быстро стекает из колонны по прекращении ее орошения. Именно эта составляющая количества задерживаемой жидкости не зависит от поверхностного натяжения, в то время как полная задержка, согласно Шулмэну и др., зависит от него в заметной степени вследствие существенности влияния поверхностного натяжения на статическую задержку, соответствующую той части жидкости, которая остается в насадке по прекращении орошения. Примеч. пер. [c.224]

    В результате промышленных испытаний получени.данны л. влиянии удельного орошения, концентрации АДДЭА в растворе и степени насыщения амина на селективность процесса очистки газа. Экспериментальные зависимости использованы при разработке технологического регламента на эксплуатацию установок очистки природного газа с применением растворов АЛДЭА для различных технологических ситуаций, включая изменения производительности, состава перерабатываемого сырья, его физических параметров и др. [c.55]

    Расход очищаемого газа С, Объем циркупирую-щего абсорбента L, м7 ч Плотность орошения L/G, л/ м Концетрация ДЭА в растворе, % мае. Содержание кислых компонентов в очищаемом газе, % мол. Степень насыщения амина, моль/моль Расход пара на регенерацию, кг/мЫ.г [c.58]

    Равномерное распределение температур по высоте деасфальтизационной колонны создает равномерное внутреннее орошение, повышает разделительную опособность и четкость отделения смолисто-асфальтеновых веществ и полициклических ароматических углеводородов, что обусловливает получение высококачественного деасфальтизата. На рис. 18 [23] показано. распределение температуры по высоте деасфальтизационных колонн двух конструкций из этих данных следует, что колонна с внутренним подогревателем наиболее рациональна, так как в этом случае температура распределена пропорционально высоте колонны, причем обеспечение цротивотока в зоне подагрева увеличивает полезную высоту колонны, повышая степень и четкость разделения компонентов сырья. [c.76]

    VII. Основные технологические параметры ХТП и производства. В этом разделе наряду с указанием для каждого ХТП и аппарата основных технологических параметров (давление, температура, объемная и линейная скорости, степень насыщения, степень диспергирования, концентрации веществ в растворах, скорости расслаивания, размеры газанул и кристаллов, допустимое влагосодер-жание) отмечаются технологические условия приготовления и регенерации катализаторов, адсорбентов, растворителей и реагентов, которые осуществляются на данном объекте химической промышленности. Кроме того, приводятся сведения о механической прочности и гидравлическом сопротивлении применяемых катализаторов и адсорбентов условия образования осадков, полимеров и пены, методы предотвращения их образования и методы их удаления рекомендации по характеру перемешивания жидкостных сред рекомендации по значениям флег-мовых чисел и плотностей орошения для специальных процессов разделения [c.19]

    Пользоваться графиком Кремсера рекомечдуется следующим образом. Допустим, нам необходимо определить скорость циркуляции масла через абсорбер, имеющий восемь теоретических тарелок. Целевым компонентом является пропан, степень извлечения которого принята равной 0,85. На оси ординат находим 0,85, по горизонтали 0,85 движемся до пересечения с кривой, соответствующей восьми теоретическим тарелкам. Опускаясь из точки пересечения вниз по вертикали на оси абсцисс находим величину эф- Зная К, У +1 и А, можно рассчитать удельный расход абсорбента. Аналогично, если известно удельное орошение, можно определить значение А. Число теоретических тарелок, необходимых для данной степени извлечения целевого компонента при известных коэффициенте абсорбции и данном количестве удельного орошения, [c.132]

    Следующая стадия расчета ректификационной колопны — определение числа теоретических тарелок и количества орошения, необходимых для данной степени разделения ключевых компонентов. Имеется неопределенное число сочетаний этих двух переменных, позволяющих получить желаемую чистоту разделения. На рис. 77 в общем виде представлена кривая зависимости числа теоретических тарелок от количества орошения. По существу эта кривая является гиперболой, одна из ветвей которой ассимптотически приближается [c.142]

    Условиями, необходимыми для выполнения равенства (114), являются одинаковая скрытая молярная теплота конденсации всех компонентов смеси, возможность получения одного и того же продукта как при температуре начала кипения сырья, так и при температуре частичного его испарения. Эти условия хорошо выполняются при разделении обычных углеводородных смесей. Область применения уравнения (114) не ограничивается температурами начала кипения и частичного испарения сырья. Если колонна эксплуатируется с частично испаренным сырьем, то это уравнение можно использовать для расчета количества орошения, необходимого для работы колонны с большей или меньшей степенью испаренности сырья. [c.148]

    Коэффициент использования насадочной колонны п1па является функцией коэффициента неравномерности орошения I и степени перемешивания т , отнесенной к одной теоретической ступени разделения  [c.44]


Смотреть страницы где упоминается термин Орошение степень: [c.153]    [c.196]    [c.358]    [c.52]    [c.53]    [c.62]    [c.98]    [c.133]    [c.153]    [c.154]    [c.254]    [c.40]    [c.44]   
Препаративная органическая химия (1959) -- [ c.139 ]

Препаративная органическая химия (1959) -- [ c.139 ]




ПОИСК





Смотрите так же термины и статьи:

Орошение



© 2025 chem21.info Реклама на сайте