Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Граничная пара

    Б Алголе допускается использование массивов произвольной размерности. При этом размерность характеризуется не числом элементов, а числом измерений. Например, п-мерному вектору будет соответствовать массив с размерностью, равной единице, а матрице двумерный массив. Количество элементов по каждому измерению массива характеризуется разностью между максимальным и минимальным значениями соответствующего индекса, т. е. верхней и нижней границами изменения индексов. Границы по каждому измерению массива образуют граничную пару. Очевидно, переменная с индексами будет иметь такое количество индексов, сколько граничных пар у массива. Границы в каждой граничной паре разделяются двоеточием. [c.53]


    Группа массивов А [i п, 1 ге], В [О к, i к], С [— 1 О, —5 0] действительного типа не может быть объединена в сегмент массивов, поскольку, хотя все массивы одного типа, они отличаются между собой граничными парами. Так же как и ранее, их можно описать каждый в отдельности, но, очевидно, удобнее воспользоваться понятием списка массивов и описать следующим образом  [c.55]

    При таких обозначениях, как видно из рис. 8.3, граничные пары массивов будут [c.160]

    Начало ввод основных параметров пласта чтение граничных пар массивов. [c.207]

    Граничной кривой ВС отвечает значение суммарного давления нефтяных паров = р — (t), и поэтому линия ВС является кривой точек росы для паров Н2О. Подставляя это значение р в равенство (11.113), можно получить уравнение [c.118]

    Значение Z представляет границу относительного мольного содержания ИзО в паровой фазе, отделяющую область, в которой углеводородные пары могут находиться в насыщенном состоянии, а водяной пар в перегретом. При значениях Х < Хс одновременное достижение температуры насыщения паровой фазы углеводородов и точки росы НзО возможно только на граничной линии ВС. [c.119]

    Если же в исходной ненасыщенной паровой смеси нефтяной фракции и НзО относительное содержание водяного пара Zп ]> > Хс, то при понижении температуры вначале достигается точка росы НдО, а углеводороды остаются в парах в перегретом состоянии. Граничная линия СЕ на диаграмме состояния (см. рис. 11.14) является геометрическим местом фигуративных точек, представляющих паровые смеси данной нефтяной фракции и водяного пара, в которых НзО находится в насыщенном, а углеводороды в перегретом состоянии. Линия СЕ, очевидно, располагается вправо от точки С и описывается только уравнением вида (11.119), ибо уравнение (11.120) уже теряет смысл, поскольку е = 1 достигается при более низких температурах. [c.119]

    В области II, заключенной на диаграмме состояния между осью ординат и граничными линиями АС тз ВС, построено семейство кривых, каждая из которых отвечает определенному значению степени отгона е нефтяной фракции. На линии ВС V. нефтяные пары, и вода одновременно достигают состояния насыщения. [c.119]

    Граничные концентрации. Числа кмолей, концентрации, температуры и мольные энтальпии потоков паров и флегмы называются элементами ректификации чтобы иметь правильное суждение о процессе, протекающем в колонне, их надо определять для каждой ступени. [c.142]

    В укрепляющей колонне, работающей в присутствии перегретого водяного пара, каждой определенной равновесной системе в конденсаторе в совокупности с определенным съемом тепла на верху колонны отвечает своя пара предельных концентраций, которую нельзя превзойти ни нри каком числе тарелок в низу колонны. При этом, чем больше тенла отнимается в конденсаторе колонны, тем ниже значения граничных составов. Таким образом, понятие минимального съема тепла или минимального флегмового числа применимо и к условиям работы укрепляющей колонны в присутствии перегретого водяного пара. [c.240]


    Используя найденные значения пар коэффициентов и второе из граничных условий (13.5), при помощи (13.11) можем вычислить искомые значения функции во всех узлах, начиная с / = М — 1  [c.390]

    Пределы воспламенения газов и паров в воздухе определяются их концентрациями в воздухе при атмосферном давлении, при которых смесь способна воспламеняться от внешнего источника зажигания с распространением пламени в ее объеме. Граничные [c.13]

    Решение. 1. При адиабатических изменениях энтропия постоянна следовательно, для точек 1 и 2 имеем Si = S2. Так как на диаграмме (рис. VI-2) значения энтропии отложены на оси абсцисс, адиабатическое изменение от точки 1 до точки 2 происходит по прямой, параллельной оси ординат. Точка 1 лежит на пересечении изобары р = 2 ат с граничной кривой х = 1 (сухой насыщенный пар), а значит, и на изотерме Ti= 180 К. Точка 2 определится пересечением изобары Р2 = 8 ат адиабатой, доходящей через точку 1. Установим, что точке 2 соответствует изотерма Т2 = 260 К. Найдем также значения энтальпий й = 46,1 ккал/кг, 12 = 67,3 ккал/кг. Работа адиабатического сжатия  [c.141]

    Согласно принципу соответствия, отдельным фазам на диаграмме будут соответствовать геометрические элементы твердой фазе— площадь над кривой аОЬ, жидкой фазе — площадь над кривой ЬОс, газовой фазе (пар)—площадь под кривой аОс. Граничные кривые соответствуют сосуществованию фаз Оа — твердой и газовой (зависимость давления насыщенного пара от температуры при наличии твердой фазы), Ос — жидкой и газовой (зависимость давления насыщенного пара от температуры над жидкостью), ОЬ — твердой и жидкой (зависимость температуры плавления от давления). [c.185]

    Приведенное дифференциальное уравнение интегрировали при следующих граничных условиях с=0 при т=0 и />0 с=св при т>0 и 1=а (с — концентрация пара на расстоянии I от центра капли а —радиус капли I — линейный размер пространства, в котором происходит испарение О — коэффициент диффузии т — время полного испарения капли). [c.105]

    В случае противотока без установления теплового равновесия в каждом сечении форма тепловых уравнений та же, что и в системе (111-82), но отсчет объема ведется от одного конца аппарата, а граничные условия (температуры входных потоков паров и контакта) задаются на разных концах  [c.104]

    Область существования горючей среды определяют концентрационные пределы распространения пламени (или пределы воспламенения), т. е. граничные концентрации горючих паров в воздухе, при которых пламя, возникающее от постороннего источника зажигания, способно самостоятельно распространяться по смеси сколь угодно далеко от источника. [c.16]

    На рис. 91,6 изображены кривые, выражающие зависимость между концентрациями воды в жидкости и в паре при различных концентрациях уксусной кислоты. На этом рисунке нижняя кривая выражает условия фазового равновесия в бинарной системе вода—этилацетат. Другой граничной кривой является кривая равновесия бинарной системы вода—уксусная кислота. Расчет производится следующим образом. [c.236]

    Противоизносные свойства топлив оцениваются по величине нагрузки, прп которой происходит разрушение граничного смазочного слоя и начинается катастрофический износ трущейся пары (Рк в к Г). [c.116]

    Ухудшение теплоотдачи в двухфазном потоке происходит по достижении граничной доли пара в потоке %х, причем обычно незначительно превосходит Хдр. Механизм ухудшения теплоотдачи связан, так или иначе, с разрушением или испарением пленки жидкости, омывающей стенки канала. Однако существующие гипотезы относительно этого механизма дискуссионны, и, кроме того, не определены условия, при которых может осуществляться тот или иной процесс разрушения. Поэтому при выполнении расчетов парогенерирующих каналов в качестве граничной доли пара в потоке можно использовать долю, соответствующую кризису гидравлического сопротивления. Вносимая при этом в расчет ошибка пойдет в запас, который в то же время не будет чрезмерно большим. [c.253]

    Можно получить соотношения между парами коэффициентов ЗЛ и а также 3( и 91, если использовать граничные условия (11.19) на внешней экстраполированной поверхности реактора  [c.539]

    Идентификаторы массивов в программе сопровождаются описателем array. Например, массив А, соответствующий квадратной матрице порядка р, запишется как array А . р, i р], где А — идентификатор массива, i р — граничные пары, 1 и — нижняя и верхняя границы соответственно. Переменная с индексами, соответствующая элементу матрицы запишется как А [г, /с], где i к р. [c.53]

    Если известен вид функции Р (в, 1), определяющей давление насыщенного пара точечного компонента нефтяной фракции, то, задаваясь сопряженными значениями е ж X, можно находить соответствующую температуру, решая уравнение (11.114) относительно неизвестной /, стоящей под знаком интеграла. Так, при е = 1 это уравнение устанавливает связь между относительным количеством 2 водяного пара и температурой конца кипения рассдштриваемой нефтяной фракции, представленную граничной линией АС на диаграмме состояния (см. рис. 11.14) при [c.117]


    Граничная кривая СЕ насыщенного водяного и перегретых нефтяных паров асимптотически приближается к некоторому температурному пределу, значение которого проще всего определяется подстановкой Z оо в уравнение (11.119), приводящей к Рг ->-р- Равенство Рг = р тз определяет предельную температуру пр граничной кривой СЕ уравнение ее асимптоты = = сопз1. [c.119]

    Выше граничной линии АСЕ, на которой е = 1, располагается область I перегретых водяных и углеводородных наров, а между прямой F и участком СЕ линии росы водяного пара располагается область III, внутри которой фигуративные точки отвечают двухфазным системам с жидкой водной фазой и паровой фазой, представляющей смесь перегретых углеводородных и насыщенных водяных паров. [c.120]

    Уравнение (111.54) или, что то же, (П1.55) устанавливает однозначное соответствие между съемом тепла в конденсаторе и соответствующей парой равновесных концентраций а , и у . Поэтому в укрепляющей колонне аналогично отгонной по мере перехода от верхних тарелок к нижним и приближения к той паре равновесных концентраций, которая своей продолженной конодой определяет полюс 8 , обеднение фаз низкокипящим компонентом все более и более уменьшается. Для точного достижения этой пары равновесных концентраций теоретически потребовалось бы бесконечно большое число тарелок, поэтому эти составы называют предельными или граничными концентрациями, отвечающими заданному съему тепла или, в случае применения уравнения (П1.54), принятому флегмовому числу. [c.154]

    При помощи уравнения (IV.29) ранее было установлено однозначное соответст]ше ме ду теплом кипятильника п мпнимальн].(м паровым числом отгонной колонны. Поэтому все, что было выяснено относительно роли минимального расхода тепла в процессе разделения, в полной мере может быть отнесено и к минимальному паровому числу, каждому определенному значению которого отвечает своя пара граничных копцентраций. [c.150]

    В реакторах прямоточного типа, так же как и в нротивоточных, газовые гидравлические затворы создаются путем подачи уплогнякь ыдах агентов в граничные зоны инертного газа— в камеру распре-Депитепьного устройства, а перегретого водяного пара — в низ реактора. [c.115]

    Наличие смазки начительио С1 нжает механический износ, гак как ири достаточной толщине смазочного слоя трение деталей одна о другую заменяется трением слоев смазки. Например, для пары сталь—бронза износ при наличии смазкн уменьшается примерно в 30 раз по сравнению с износом, имеющим место при отсутствии смазки. Даже кратковременное отсутствие смазки приводит к резкому повышению износа и заеданию деталей. Выделение больших количеств теплоты при трении без смазки приводит к выплавлению баббита из подшипников скольжения и заклиниванию. В зависимости от толщины и характера слоя, образуемого смазкой, возможны следующие виды трения жидкостное (полное разделение трущихся поверхностей смазкой), полужидкостное (смазка покрывает только часть полной поверхности трущихся деталей), полусухое (большая часть поверхности деталей не имеет смазки и лишь небольшая часть поверхности имеет смазку), сухое (смазка отсутствует полностью), граничное (слой смазки настолько тонок —менее 0,1 мкм, что его свойства не подчиняются законам гидродинамики). [c.43]

    Можно показать [18], что, если при л = [Хц уравнение ( 111.122) с граничным условием 01 (Г) =0 имеет ненулевые решения, то это значение параметра является точко11 ветвления решений уравнения (УП1.121), т. е. что в этой точке появляется пара новых решений. Оба решения можно в окрестности точки ветвления представить в виде [c.358]

    Каждой паре индексов (т, п) в уравнении (4.15) соответствует свой магнитный тип волны, обозначаемый как. Обычно а>Ъ, т.е. а -размер широкой, а Ь - узкой стенки волновода, т.е. основным типом волны является волна Яю. В этой волне электрическое поле направлено вдоль узкой стенки. Вид поля Яю и его эпкч)ы показаны на рис. 4.4. Картина., поля изображена силовыми линиями электрическое поле -сплошные линии, магнитное - штриховые. В соответствии с граничными условиями, в стенках волновода на толщине скин-слоя протекают токи, показанные на рис. 4.4 двойными стрелками. Дисперсия фазовой [c.86]

    Решение уравнений с одним неизвестным является весьма распространенной задачей в практике инженерных химико-технологических расчетов. Задачи такого рода возникают в расчетах при использовании однопараметрических функциональных зависимостей (определение плотности по уравнению Бенедикта—Вебба—Рубина), при расчетах стационарных условий протекания процесса (определение времени пребывания реагентов при заданной степени превращения), при расчетах паро-жидкостного равновесия (расчет температуры кипения смеси заданного состава) и т. д. Уравнения с одпим неизвестным часто возникают и при нахождении решения систем уравнений с многими неизвестными (например, при расчете бинарной ректификации), при решении дифференциальных уравнений с граничными условиями (глава 12) и т. д. [c.181]

    Задача о взаимодействии пары проводящих сфероидов радиусов 7 1 и / 2 в квазипостоянном электрическом поле напряженности Е, направленном под углом 9 к линии центров (рис. П.4.1), приводит к решению уравнения Лапласа при граничных условиях на потенциалы и на заряды сфероидов. Геометрия задачи такова, что наиболее удобно искать ее решение в бисферической системе координат (а, , ф), которая связана с декартовой системой координат следующими соотношениями [c.191]

    Гешая эту систему уравнений относительно времени десорбции паров летучих растворителей из твердой фазы при начальных и граничных условиях [c.95]


Смотреть страницы где упоминается термин Граничная пара: [c.55]    [c.55]    [c.478]    [c.118]    [c.119]    [c.144]    [c.257]    [c.139]    [c.142]    [c.140]    [c.326]   
Программирование и вычислительные методы в химии и химической технологии (1972) -- [ c.53 ]




ПОИСК







© 2025 chem21.info Реклама на сайте