Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плотность жидких веществ и водных растворов

    Несмотря на то, что в последнее время в технике все чаще стали применяться неводные растворы, использование водных растворов остается доминирующим. Растворы готовятся растворением определенного количества твердого, жидкого или газообразного веществ в определенном количестве растворителя—воды. Нередко растворы меньшей концентрации готовят разбавлением водой более концентрированных растворов. Концентрацию приготовленного раствора определяют измерением плотности раствора (ареометром, пикнометром) или определяют содержание вещества методом титрования. Чаще всего используются следующие концентрации растворов процентная, молярная, нормальная, модальная и титр. [c.51]


    ПРИЛОЖЕНИЕ I Плотность жидких веществ и водных растворов [c.804]

    В данном разделе приведены плотности твердых материалов (табл. 6.1), жидких веществ и водных растворов (табл. 6.2), температуры кипения органических соединений (табл. 6.3, 6.4), свойства насыщенного водяного пара (табл. 6.5), параметры критического состояния некоторых веществ (табл. 6.6), удельные теплоемкости твердых и жидких веществ (табл. 6.7, 6.8), мольные теплоемкости газов (табл. 6.9), теплоты сгорания и теплоемкости некоторых органических соединений (табл. 6.10), физические свойства воздуха и его состав (табл. 6.11, 6.12), теплопроводности (табл. 6.13, 6.14), удельные теплоты парообразования (табл. 6.15), динамические вязкости воды, жидких веществ и водных растворов (табл. 6.16, 6.17), диэлектрические проницаемости (табл. 6.18). [c.110]

    Жидкую мембрану готовят растворением электродноактивных веществ в таком органическом растворителе, который не смешивается с водой и имеет плотность больше плотности водного раствора. Для этой цели можно использовать хлорбензол, нитробензол. Органический растворитель может быть утяжелен добавками растворителя с большей плотностью, например, четыреххлористого углерода. [c.578]

    Плотность (кг/м ) жидких веществ и водных растворов в зависимости от температуры [c.260]

    Для учета избыточного количества исследуемого углеводорода, расходуемого только на смачивание дитизона, отбирают в цилиндр такой же отмеренный объем насыщенного водного раствора этого вещества, добавляют дитизон и титруют при взбалтывании небольшими порциями углеводорода до появления пленки флотированного дитизона. Затраченный очень малый объем вычитают из объема, пошедшего в опыте с чистой водой. Зная плотность углеводорода, объем взятой воды, нетрудно вычислить растворимость углеводорода в воде при данной температуре. Применение дитизона для индикации момента насыщения позволяет быстро и с достаточной точностью определять растворимость жидких углеводородов в воде и солевых растворах. Вместо дитизона можно применять судан, сажу и др. [c.74]

    Мочевина — кристаллическое вещество без запаха и цвета, плотность 1,335 кг/м . Производимый на заводах технический продукт имеет более или менее желтоватый оттенок. Насыпная масса кристаллической мочевины в зависимости от влажности составляет 600 50 кг/м . Мочевина, или полный амид угольной кислоты,— высококонцентрированная соль, содержащая 46,6 об.% азота, хорошо растворяется в воде, а также в спирте и жидком аммиаке, образуя с последним соединение СО(ЫН2)г-ЫНз. Мочевина нестабильна при повышенных температурах как в кристаллическом виде, так и в водных растворах. [c.143]


    Образование треххлористого азота. Треххлористый азот (ЫС1з) образуется при взаимодействии хлора с аммиаком или солями аммония в водном растворе. Треххлористый азот — сильно взрывчатое вещество с температурой кипения 71 С, пЛотно сть его при комнатной температуре составляет/1,653 г/см (его плотность больше плотности жидкого хлора) взрывается в среде озона, а также при соприкосновении с предметами или руками, даже слегка загрязненными жиром. Треххлористый азот может образоваться в процессе электролиза поваренной соли, в также в холодильниках смешения. [c.55]

    Из первого ряда чисел получен удельный вес пара = 2,32, из второго = 2,43. Теоретическая плотность пара пропильного алкоголя = 2,07, бутильного = 2,56. Свойства жидкости и ее отношение к действию различных реактивов подтверждают выведенное из анализов заключение о ее алкогольной природе. Вещество обладает запахом, похожим на запах винного спирта и одновременно напоминающим запах камфоры, оно легче воды и довольно легко смешивается с последней, имеет жгучий и ароматичный вкус.— Металлический натрий действует на него постепенно, причем выделяется газ, и образуется белая порошкообразная щелочная масса, которая при обработке водой дает едкий натр и прежнюю алкогольную жидкость. Если часть жидкости превратить в алкоголят натрия, то остающаяся часть при охлаждении затвердевает значительно легче и даже при обыкновенной температуре может сохранять кристаллическую форму. Это обстоятельство заставляет предполагать, что здесь, как и для фенола, более легкое затвердевание обусловливается полным отсутствием влаги и действительно, нри прибавлении к веществу небольшого количества воды оно уже больше не затвердевает при 0°. Более точное определение точки затвердевания оказалось невозможным она не была постоянной для одной и той н е порции жидкости, и погруженный в нее термометр продолжал постепенно повышаться или падать, в то время как часть вещества оставалась кристаллической, другая — жидкой. С крепким раствором кислого сернистокислого натрия вещество, даже при длительном стоянии, не дает кристаллического соединения.— Если поместить высушенную жидкость с обезвоженным хлористым цинком в запаянную трубку и нагреть на водяной бане, то вскоре можно наблюдать образование двух слоев. Нижний слой — водная жидкость, несомненно, раствор хлористого цинка в выделившейся воде, верхний слой представляет собой пахнущую камфорой бесцветную жидкость, не обладающую особой летучестью и, вероятно, [c.95]

    Биохимические методы используют в основном для очистки и обезвреживания грунтов на нефтеперерабатывающих заводах и на местах добычи нефти [27-30] и реализуют их следующим образом (рис. 10). Нефтешлам (плавающий и донные осадки) забирают из шламонакопителя и насосом 1 подают на самоочищающийся фильтр грубой очистки 2, где нефтешлам очищают от крупных частиц размером более 10 мм. Перед фильтром грубой очистки 2 в поток нефтешлама насосом 3 вводят деэмульгатор. Затем нефтешлам направляют в емкость 4, где его нагревают до 45 °С водяным паром, который подают непосредственно в поток нефтешлама. Нефтешлам расслаивается на четыре фазы нефтепродуктовую, водную, водно-иловую суспензию и замазученные механические примеси. Нефтепродуктовую фазу выводят из емкости 4 и насосом 5 отправляют в подогреватель-смеситель 6, догревают до 75 С водяным паром. Перед подогревателем-смесителем 6 нефтепродуктовую фазу обрабатывают деэмульгатором (насос 7). Далее нефтепродуктовую фазу в центрифуге 8 очищают от механических примесей, плотность которых выше плотности воды, и самотеком отправляют в емкость-деаэратор 9, оттуда насосом 10 подают в подогреватель-смеситель 11, где нагревают водяным паром до 95 °С. Во всасывающую линию насоса 10 подают деэмульгатор насосом 12. Нагретую нефтепродуктовую фазу сепарируют в сепараторе 13 и выводят очищенный нефтепродукт и воду, которую повторно очищают в сепараторе 14 (насосом 15 подают на размыв донного осадка в шламонакопитель). Замазученные механические примеси (грунт) с нижнего уровня емкости 4 конвейером 16 направляют в емкость 17, туда же насосом 18 закачивают легкую бензиновую фракцию НК-62 °С и водяной пар, Замазученный грунт отмывают растворителем при помощи внутреннего устройства 19, обрабатывают паром, после чего с нижнего уровня емкости 17 отправляют конвейером 20 в аппарат биологической очистки 21. Жидкие углеводороды из емкости 17 насосом 22 подают в емкость 4 для дальнейшей переработки. Водно-иловую суспензию из емкости 4 перекачивают насосом 23 в аппарат очистки — культиватор 2 и вносят питательные вещества (источники азота, фосфора, буферные растворы для поддержания pH) и инокулят [c.34]

    Для малого количества жидких нефтепродуктов (капли) либо для твердых веществ (парафина, битума и др.) пользуются методом уравнивания плотности, или методом взвешенной капли каплю или кусочек исследуемого нефтепродукта вводят в спирто-водный (р 1) или водно-соляный раствор слабой концентрации (р 1) и добавляют в сосуд воду или концентрированный раствор соли до тех пор, пока испытуемый нефтепродукт не будет взвешен внутри раствора. В этом случае плотность нефтепродукта равна плотности раствора, которую определяют ареометром. [c.37]


    Этот метод определения ККМ сводится к точному измерению плотности растворов при разных их концентрациях, что позволяет связать изменения парциального молярного объема ПАВ с плотностью его растворов. Для этого необходимы очень точные измерения при тщательном контроле постоянства температуры. Этот метод использовали многие исследователи [74—78]. Очень удобным и достаточно точным вариантом этого метода, в котором отпадает необходимость проведения точных измерений плотности и состава, является определение парциального молярного объема путем прямых дилатометрических измерений [9, 79]. Дилатометр состоит из цилиндрического стеклянного сосуда объемом 100—150 мл в виде равномерно калиброванного капилляра с внутренним диаметром 1,8—2,0 мм, в котором находится большой стеклянный шарик. Дилатометр помещается в термостат при постоянной температуре, а нижняя часть капилляра заполняется растворителем. Навеска ПАВ (твердого или жидкого) запаивается в длинную тонкостенную стеклянную ампулу, достаточно узкую, чтобы пройти через цилиндр внутрь сосуда. Там она разбивается, и ПАВ растворяется, что облегчается вращением стеклянного шарика. Изменение объема жидкости, оцениваемое по уровню ее после того, как достигнуто равновесие (с учетом объема стеклянных осколков), деленное на число молей растворенного вещества, дает его парциальный молярный объем. Существенным, конечно, является тщательный контроль за температурой в пределах 0,001° С. Этот метод применим к любому типу ПАВ как в водных, так и в неводных растворах и пригоден для измерения парциального молярного объема солюбилизата. [c.21]

    В лабораторных условиях экстракцию проводят обычно с помощью делительной воронки. В эту воронку помещают водный раствор, содержащий растворенное вещество, подлежащее экстрагированию, и не смешивающийся с водой органический растворитель, которым извлекается экстрагируемое вещество из водного раствора. Воронка энергично встряхивается (обычно 2—5 мин). При этом обе жидкие фазы диспергируются друг в друге, образуя капли различн01 0 размера. Экстрапфуемое вещество через границу раздела водной и органической фаз переходит из водной фазы в органическую до тех пор, пока в системе не наступит межфазное равновесие, при котором достигаются равновесные концентрации экстрагируемого вещества в водной и в органической фазах. При достижении межфазного равновесия скорость перехода растворенного вещества из водной фазы в органическую становится равной скорости перехода того же вещества из органической фазы в водную, т. е. осуществляется состояние динамического равновесия. После прекращения встряхивания обе жидкие фазы расслаиваются, при 1ем тем быстрее, чем больше разница в плотности воды (водного раствора) и применяемого органического растворителя, плотность которого И ожет быть как выше, так и ниже плотности воды. [c.241]

    К методам приведения относится и так называемый -метод де Бура [167], получивший наибольшее распространение. Этот метод, как будет показано далее, представляет особый интерес при исследовании адсорбции из водных растворов, и к его более детальному анализу в этой связи мы еще должны будем вернуться. Для определения удельной поверхности адсорбентов по этому методу также пользуются стандартным адсорбентом с известной поверхностью. При исследовании адсорбции на углеродных материалах в качестве стандарта выбирают непористую сажу. Изотермы адсорбции стандартного адсорбата (азота) на обоих адсорбентах выражают в виде зависимости объема адсорбированного вещества 1>а от равновесного относительного давления. При этом плотность адсорбированного вещества принимают равной плотности его в жидком состоянии при той же температуре (как это впервые было допущено Поляни). Поскольку поверхность непорпстого стандартного адсорбента известна, то из величин адсорбированного объема вещества можно рассчитать среднюю статистическую толщину адсорбционного слоя I и представить ее как функцию plps В -методе допускается, что на адсорбенте с неизвестной удельной поверхностью одинаковой химической природы средняя статистическая толщина адсорбционного слоя при равных р р такова же, как и на адсорбенте с известной поверхностью. Это условие справедливо при приблизительном равенстве энергетических характеристик адсорбентов. Для всех таких адсорбентов должна существовать единая кривая = / (р/р.ч), что и подтвернадается большим количеством экспериментальных измерений [141, 142]. [c.71]

    При адсорбции сложных молекул прямое определение плотности вещества в жидком состоянии становится невозможным. Так, молекулы ПАВ, состоящие из длинных Гидрофобйых (углеводородных) и гидрофильных (например, оксиэтилированных) цепей в зависимости от их длины могут находиться не только в жидком, но и в пастообразном или твердом состоянии. Возможно, однако, достаточно на(дежное определение молярных объемов этих веществ косвенным путем на основании измерений поверхностного натяжения их водных растворов. [c.65]

    В последние годы в зарубежной литературе появились сообщения о некоторых новых вариантах кулонометрическо о анализа. Например, предложен способ кулонометрии [951], в котором определяемые органические и неорганические вещества количественно адсорбируются на электроде, изготовленном из ацетиленовой газовой сажи , и подвергаются на нем электролитическому восстановлению или окислению. Такая методика исключает трудности, связанные с необходимостью обеспечивать тесный контакт между электродом и реагирующими веществами в процессе электролиза. Метод применим к веществам, плохо растворимым в водных растворах. Адсорбцию определяемого соединения можно осуществлять не только из жидкой, но также из газовой фазы, что особенно важно для применения этого способа к определению малых количеств веществ в воздухе и газовых смесях. Анализируемый раствор пропускают через сажевый электрод со скоростью, обеспечивающей количественную адсорбцию определяемого компонента. Определение таким путем миллиграммовых количеств меди, антрахинона и 4-нитропиридин-1-окиси дает ошибку соответственно 3 2,32 и 1,89%. При определении аналогичных количеств железа ошибка значительно больше из-за неполноты адсорбции указанного иона. Для достижения количественной адсорбции в такого рода случаях анализируемый образец следует растворять в небольшом объеме раствора и применять в качестве инертного электролита концентрированные солевые растворы. Конечную точку определяют потенциометрически, причем для получения больших скачков потенциала в конечной точке необходимо применять большие плотности тока электролиза. Описанный [c.116]

    Очень часто парциальные мольные объемы сравнительно неполярных веществ в водном растворе значительно меньше, чем объемы чистых веществ широко известным примером служит уменьшение объема нри смешивании спирта с водой. Это можно объяснить рыхлостью структуры жидкой воды, из-за чего слабо взаимодействующие молекулы могут легко проникать в пустоты при сравнительно малом увеличении общего объема. Сильные, зависящие от геометрии системы дипольные взаимодействия между молекулами воды приводят к тому, что свободная энергия менее плотной жидкости ниже, чем у состояния, отвечающего максимальной плотности воды, где могла бы достигаться максимальная стабилизация за счет дипольных взаимодействий мольный объем воды 18,1 мл/моль в полтора раза больше мольного объема 12,5 мл/моль, вычисленного в предположении плотнейшей упаковки молекул воды [84]. Большой мольный объем воды при полном использовании всех возможных водородных связей несомненно проявляется в низкой плотности льда и позволяет приемлемо объяснить, что вода обладает максимальной плотностью при температуре на несколько градусов выше температуры плавления. Увеличение объема при понижении температуры от температуры максимальной плотности до температуры плавления связано с увеличением числа водородных связей и структурированием воды при приближении к состоянию с максимальным числом водородных связей. Не будем вникать в дискуссию по поводу того, можно ли точно описать жидкую воду как двухструктурную систему, состоящую из областей структурированной воды с низкой плотностью и областей с высокой плотностью, где лголекулы воды неупорядочены. Отметим лишь, что детали этой дискуссии не влияют на пригодность качественной концепции, заключающейся в том, что возрастание структурированности или числа линейных водородных связей связано с увеличением количества воды, имеющей низкую плотность. Этот процесс происходит в больп1ей степени в присутствии неполярных групп. [c.327]

    Оксидные покрытия получают не только химическим, но и электрохимическим способом. В частности, анодное оксидирование алюминия и его сплавов (АВ, АМг, Д-1, Д-6) проводят в сернокислом, хромовокислом или щавелевокислом электролите. В сернокислом электролите (20%-я Н2504) процесс ведут при плотности тока 100—200 А/м и напряжении 10—16 В. Продолжительность обработки при нормальной температуре составляет 18—50 мин. Образующиеся покрытия толщиной 4—6 мкм обладают высоким электрическим сопротивлением и теплостойкостью до 1500 °С. Они пористы, легко сорбируют красители из водных растворов и впитывают жидкие лакокрасочные материалы, что способствует улучшению адгезии покрытий. Способность сорбировать красящие вещества широко используется для имитации алюминия под золото. [c.304]

    Пример 10.5. Определить кинетический коэффициент массопередачи и для потока водного 0,01 М раствора Na l, проходящего через слой частиц ионита с е = 0,4. Приведенная скорость жидкости равна 1,0 см/с, ее температура — 25 °С. Диаметр частиц составляет 2 мм, а коэффициент диффузии ионов натрия равен 1,2- Ю" mV в жидкой фазе (сравни с табл. 2,11) и 9,4-10 см"/с внутри частиц [11 ]. Объемная плотность слоя по сухой смоле составляет 0,7 г/см , адсорбционная емкость смолы в расчете на сухое вещество равна 4,9 мг/г. Константа равновесия закона действующих масс составляет 1,2. [c.599]


Смотреть страницы где упоминается термин Плотность жидких веществ и водных растворов: [c.343]    [c.28]    [c.19]    [c.372]    [c.460]    [c.385]    [c.234]    [c.641]    [c.163]    [c.501]   
Смотреть главы в:

Процессы и аппараты химической технологии -> Плотность жидких веществ и водных растворов

Процессы и аппараты химической технологии Издание 3 -> Плотность жидких веществ и водных растворов

Процессы и аппараты химической технологии Издание 5 -> Плотность жидких веществ и водных растворов




ПОИСК





Смотрите так же термины и статьи:

Плотность жидкого

Растворы жидкие



© 2025 chem21.info Реклама на сайте