Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Реакции групповые фенолы

    Реакции анионов различных карбоновых кислот с катионами мо-ди(П), железа(1П), кобальта(П) и т. д. с образованием окрашенных осадков карбоксилатных комплексов различного состава являются общими групповыми реакциями на карбоксилатную группу и широко используются в фармацевтическом анализе. Проведению реакции мешают фенолы. [c.477]


    Накопленные к настоящему времени данные по химии процесса жидкофазной гидрогенизации и взаимосвязи реакций, имеющих место в этом процессе, представляют значительный интерес. Целесообразно рассмотреть сначала общую динамику изменения группового состава типичного сырья в процессе жидкофазной гидрогенизации с тем, чтобы выяснить закономерности превращений одних групп компонентов в другие, а затем перейти к уточнению и детализации химии превращений каждого класса соединений — нейтральных соединений, кислотных компонентов (фенолов) и азотсодержащих соединений. Превращения соединений, содержащих серу, вследствие специфичности процессов гидрообессеривания топлив рассматриваются в гл. 6. [c.163]

    Сушествование и роль ММВ с участием протона в нефтяных системах доказаны экспериментально [23,29,69,75,141,143,154...157]. Так, в асфальтенах природных битумов и нефтей значительная часть кислорода входит в состав ОН-групп, почти полностью участвующих в образовании комплексов с Н-связью и не исчезающих даже при очень больших разбавлениях четыреххлористым углеродом [70,75,141,157]. Интенсивность Н-связей возрастает с увеличением содержания кислорода во фракциях асфальтенов или с ростом их полярности [141]. Аналогично ведут себя и КН-группы. Многие гетероорганические соединения битума, в частности, содержащие кетонные, хинонные, карбоксильные и циклические амидные группы, ведут себя как Н-акцепторные основания и активно участвуют в образовании Н-связи [141,157]. Асфальтены и их групповые компоненты при взаимодействии с фенолом и двухатомными спиртами проявляют свойства Н-акцепторных оснований и образуют Н-связи с энтальпией 23-24 кДж-моль- [141,154] не исключается образование и более слабых Н-связей. Концентрация Н-акцепторных оснований в асфальтах не менее 2 ммоль-г а окисление воздухом при повышенных температурах вызывает увеличение их Н-акцепторной основности [154]. Метилирование, ацетилирование и другие реакции связывания активного водорода значительно увеличивают Н-акцепторную основность асфальта, что указывает на то, что в асфальте Н-кислоты и Н-основания находятся в Н-связанном состоянии [141,143,154]. Не исключается возможность образования внутримолекулярных Н-связей [141,143,155]. [c.66]

    К. Бауэр. Анализ органических соединений. Издатинлит, 1953, (488 стр.), В книге содержится описание методов открытия, идентификации и количественного определения важнейших классов и отдельных представителей органических соединений углеводородов, галогенопроизводных, спиртов, фенолов, эфиров, нитропроизводных, аминов, альдегидов, кетонов, кислот, углеводов, жиров, алкалоидов и др. По каждому классу дан обзор общих групповых реакций и описаны специфические методы открытия и количественного определения главных представителей класса. Каждая глава снабжена списком литературы. [c.492]


    Исследования на присутствие сульфидов в широких фракциях во всех случаях показали положительную реакцию. Данные по качественному групповому составу сераорганических соединений, содержащихся в широких фракциях исследуемых нефтей, сведены в табл. 6 и свидетельствуют о том, что в широких фракциях высокосернистых нефтей Таджикской депрессии сераорганические соединения в основном представлены различными рядами сульфидов и что в них отсутствуют сераорганические соединения, относящиеся к меркаптанам, тио-фенолам и дисульфидам. [c.15]

    Монография немецкого ученого К- Бауера Анализ органических соединений является новейшей и наиболее полной из всех зарубежных книг, посвященных данной области органической химии. В книге содержится описание методов открытия, идентификации и количественного определения важнейших групп и отдельных представителей органических соединений, включая углеводороды, галоидопроизводные, спирты, фенолы, простые и сложные эфиры, хиноны, нитропроизводные, амины, альдегиды, кетоны, одноосновные и многоосновные кислоты, окси- и аминокислоты, ангидриды, сернистые соединения, углеводы, жиры, белки, алкалоиды, витамины, стерины и др. По каждому классу дан обзор общих групповых реакций и описаны специфические методы открытия и количественного определения важнейших представителей класса. [c.3]

    Разделение органических веществ методами, основанными на различии физических свойств—летучести, растворимости и т. д.,—имеет ограниченное применение, так как не всегда эти свойства настолько отличаются у отдельных компонентов исследуемой смеси, чтобы можно было добиться их полного разделения. Вопрос о принадлежности исследуемого вещества к той или иной группе соединений разрешается довольно легко при помощи ряда групповых реакций, благодаря которым не представляет особых затруднений установить, является ли данное вещество гидроксилсодержащим соединением—спиртом или фенолом, амином, кислотой и т. д. Эти же групповые реакции могут быть использованы и при разделении смеси на отдельные группы соединений. Так, например, смесь углеводородов, фенолов, карбоновых кислот и аминов удается разделить, последовательно обрабатывая ее карбонатом натрия, едким натром и соляной кислотой. Однако и такие на первый взгляд простые задачи могут осложняться, если в исследуемой смеси присутствуют соединения, отличающиеся особенностями строения, оказывающими существенное влияние на поведение вещества. [c.7]

    Спектры люминесценции р-ров большинства органич. веществ представляют собой широкие размытые полосы, только нек-рые соединения имеют спектры, состоящие из узких характерных полос (хлорофилл, порфирины). Преобладающие цвета люминесценции — фиолетовый и синий, реже — зеленый красным цветом люминесцируют лишь немногие соединения (хлорофилл, порфирины). В большинстве случаев для идентификации органич. соединений приходится сочетать непосредственное наблюдение люминесценции с частичным разделением смесей и проведением проверочных реакций на отдельные компоненты. Для идентификации канцерогенных веществ из числа полициклич. углеводородов (напр., 3, 4-бензпирен, 3, 4, 6, 7-дибензпирен) наблюдают спектры их свечения в р-рах нейтральных, легко кристаллизующихся парафинов (пентан, гексан, гептан) при низких темп-рах 77,3° К. и 20° К). В указанных условиях полосы значительно сужаются и по типичным квазилинейным спектрам можно идентифицировать и количественно определять канцерогенные углеводороды. Напр., бензпирен можно обнаружить уже при концентрации 10" 2 на 1 г вещества. При наблюдении флуоресценции органич. веществ необходимо учитывать след, факторы 1) если молекула обладает кислыми или основными свойствами, ее люминесценция меняется с изменением величины pH, т. к. люминесценция недиссоциированной молекулы и иона различны, напр, ион акридина люминесцирует зеленым цветом, а не-диссоциированное основание — лиловым 2) спектры флуоресценции углеводородов почти не изменяются при перемене растворителя спектры веществ, способных ассоциировать с растворителем, могут меняться с его переменой. Известны люминесцентные групповые реакции на фенолы, спирты, эфиры фталевой к-ты, перекиси, монокарбоновые к-ты и др. [c.500]

    При Очистке масляного сырья раетворителями, иапример фенолом или фурфуролом, нежелательные компоненты удаляются, при гидрокрекинТ-е же они подвергаются различным химическим превращениям ароматические углеводороды и гетерогенные соединения гидрируются, полициклические нафтеновые углеводороды расщепляются (гидродециклизация в мононафтены), непредельные соединения насыщаются водородом. Одновременно протекают реакции гидроизомеризации нормальных парафиновых углеводородов в изопарафиновые. В итоге групповой углеводородный состав сырья сильно изменяется в благоприятную для товарных масел сторону содержание конденсированных ароматических углеводородов в них значительно ниже, а нафтеновых и изопарафиновых существенно выше, чем в сырье гидрокрекинга. [c.277]


    При определении количественного и качественного состава кислородсодержащих соединений широко применяется инфракрасная спектроскопия благодаря наличию характеристических полос кислородных функциональных групп 3400—3600 см — валентные колебания атомов водорода гидроксильных групп кислот и фенолов, 1650—1740 см —валентные колебания карбонильной группы кислот, кетонов, сложных эфиров (лактонов), ангидридов кислот, амидов. Показано [49], что с помощью специфических химических реакций возможно провести идентификацию полос поглощения карбонильных групп различных классов соединений. Так, обработка карбоновых кислот бикарбонатом натрия приводит к образованию карбоксилатанионов, для которых характерно поглощение в области 1580—1610 см . Дальнейшая обработка образца гидроксидом натрия при нагревании вызывает омыление сложных эфиров, лактонов, ангидридов и образование карбоксилатанионов. В результате в области 1650— 1740 СМ наблюдается только поглощение кетонов. Пользуясь групповыми интегральными коэффициентами поглощения (для карбоновых кислот 1,24-10 л/(моль-см), сложных эфиров 1,15 10 кетонов 0,72-10 л/(моль-см) [50], можно определить концентрацию соединений каждого типа. Применение методов ИК-спектроскопии в исследованиях состава нефтей 51] позволило обнаружить и количественно оценить наличие карбоновых кислот, фенолов, амидов, 2-хинолонов. Отмечено, что точность анализа значительно снижается вследствие межмолекулярной ассоциации компонентов, что приводит к уменьшению интенсивности поглощения групп и занижению результатов. Повышение точности достигается разбавлением растворов и использованием в качестве растворителей тетрагидрофурана или дихлорметана. Однако более значительные ошибки возникают из-за неверной оценки молекулярных масс определяемых соединений и наличия в молекуле более одного гетероатома. Исправление этого положения возможно препаративным выделением одного класса соединений и установления коэффициента поглощения данной функциональной группы. [c.50]

    Предположим, что исследуется жидкость, в которой по данным элементного анализа не содержится других элементов, кроме С, Н и О. Анализ показал, что эта жидкость может относиться к кислотам, сложным или простым эфирам, альдегидам, кетонам, спиртам или фенолам. Испытания на растворимость указывают на умеренный молекулярный вес кроме того, если судить по растворимости, исследуемый образец не может относиться к кислотам (которые растворимы как в NaOH, так и в NaH Os) и фенолам (которые растворимы в NaOH). Поскольку соединение все еще может быть и эфиром (простым или сложным), и альдегидом, и кетоном, и спиртом, необходимо провести групповые реакции, чтобы еще более сузить круг оставшихся возможностей. [c.215]

    Групповые реакции известны для соединений с различными функциональными группами, например для аминов, галогенопроизводных, альдегидов, кетонов, фенолов, ненасыщенных соединений, нитросоединений, сложных эфиров, спиртов, ароматических углеводородов и простых эфиров. Так, обесцвечивание брома указывает па двойные связи и окпсляющпеся группы (С2Н4+Вг2 = С9Н4Вг2), а выделение водорода при действии металлического натрия характерно для спиртов и других соединений, содержащих кислые атомы водорода [КОН+ а(кр) = [c.216]

    Органич. К. а. резко отличается от неорганич. анализа. Подавляющее большинство органич. соединений имеет ковалентный характер и потому каждое из них должно идентифицироваться индивидуально. Для этого сначала проводят реакции, определяющие принадлежность соединения к к.-л. классу органич. соединений, а затем — реакции, характерные для данного соединения. В органич, К. а. смесь веществ первоначально разделяют, основываясь на их разной летучести, растворимости или сорбции. К легколетучим относят вещества с т. кин. ниже 160°, к труднолетучим — ст. кип. выше 160°. Затем вещества разделяют по классам согласно их растворимости, преим. в воде и эфире. Наконец, применяют групповые реакции, с помощью которых устанавливают присутствие классов химич. соединений (спирты, фенолы, кислоты, амины и проч.). Некоторые химич. реакции позволяют перевести малоразличимую смесь веществ в вещества с достаточно различными физич. свойствами, что дает возможность отделять их далее посредством дистилляции или растворением. Напр., можно превратить смесь поликарбоновых к-т и аминокислот в летучие сложные эфиры, сравнительно легко разделяемые. При идентификации выделенного чистого вещества большое значение имеет элементарный К. а., проводимый обычными методами для открытия углерода, водорода, азота, серы, галогенов, фосфора, мышьяка и металлов, а также испытание основных физич. свойств (темп-р плавления и кипения, растворимости и определение молекулярного веса). См. также Элементарный анализ, Функциональный анализ. [c.252]


Смотреть страницы где упоминается термин Реакции групповые фенолы: [c.500]    [c.476]    [c.251]    [c.252]   
Люминесцентный анализ (1961) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

КАО групповые

Реакции групповые



© 2025 chem21.info Реклама на сайте