Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Анализ также качественный элементарный

    Качественный элементарный анализ и определение чисел омыления и ацетильных чисел позволяют распределить полимеры по различным группам, как показано в табл. 15. В первую группу входят силиконовые полимеры, а также фосфор- и галогенсодержащие вещества. Следующие группы включают соединения, содержащие азот или серу или оба элемента вместе. Затем идут полимеры, содержащие углерод, водород и кислород, с числами омыления выше 325, 120—325 и ниже 120. Наконец, вещества с числом омыления ниже 120 подразделяются по их ацетильному числу (выше или ниже 40). [c.86]


    АНАЛИТИЧЕСКАЯ ХИМИЯ — один из основных разделов химической науки. изучающий методы определения состава веществ. Различают качественный и количественный анализы, а также, в зависимости от объекта исследования, неорганический и органический анализы. Различают также элементарный, функциональный, весовой, объемный, или титриметрический, спектральный, хроматографический, полярографический и другие анализы. [c.25]

    Разработкой и совершенствованием методов различных видов анализа занимается аналитическая химия. Ее задача — разрабатывать методы качественного и количественного элементного и вещественного анализа в статических и динамических условиях, фазового, локально-поверхностного и структурного анализа, удовлетворяющие потребностям науки и производства. Кроме того, в задачи аналитической химии входит также создание теоретических основ этих методов и конструирование необходимой аппаратуры и приборов. Поэтому аналитическую химию можно определить как науку о методах анализа или как науку о методах получения информации об элементарных объектах. [c.8]

    Качественные критерии носят статистический характер [21]. Первый, наиболее простой способ состоит в определении дисперсии концентрации того ингредиента, который играет роль диспергируемой фазы. При этом общий объем смеси разделяют на достаточно большое число элементарных объемов и, пользуясь таблицей случайных величин, отбирают достаточно представительную выборку (обычно не менее 25 проб), которую направляют на химический анализ. Может быть установлена взаимосвязь величины дисперсии и какого-либо параметра смешения, например времени. Используют также фактор сравнительной неоднородности, представляющий собой отношение дисперсий в исследуемом и стандартном образцах (за эталон сравнения может быть принят образец, в котором достигнуто наилучшее распределение компонентов для данной системы). С увеличением степени неоднородности фактор неоднородности изменяется от 1 до оо. [c.468]

    В случае неизвестных соединений, кроме качественных определений, проводится количественный элементарный и групповой анализ, а также определяется молекулярный вес. [c.14]

    Т) этой и двух последующих главах рассмотрены равновесие адсорбции и кинетика элементарных гетерогенных каталитических реакций. Факторы, определяющие закономерности адсорбции и гетерогенного катализа, весьма разнообразны и часто с трудом поддаются учету. Среди них решающими являются число мест, которые занимает адсорбированная частица на поверхности конфигурация активированных комплексов неоднородность поверхности катализатора взаимное влияние адсорбированных частиц и коллективное взаимодействие адсорбированных частиц с поверхностью. При анализе равновесия применены методы статистической физики. При обсуждении кинетики использована теория абсолютных скоростей реакций [32], которая несмотря на не вполне последовательный характер исходных положений дает возможность правильно (как качественно, так зачастую и количественно) описать кинетические закономерности для подавляющей части химических превращений. Кроме этих строгих методов, для характеристики эффектов взаимодействия применена также полуэмпирическая модель. Теория абсолютных скоростей есть но существу равновесная теория, поэтому удобно исследовать равновесие и кинетику совместно. Второй довод в пользу такого рассмотрения заключается в том, что тип адсорбции частиц и активированных комплексов определяет и адсорбционные изотермы, и кинетические закономерности. [c.53]


    Если сведения об элементарном качественном составе пробы недостаточны и необходимы данные о присутствии более сложных компонентов — ионов, образованных несколькими элементами, и молекул, нужно использовать и соответствующие химические реакции, а также данные некоторых физических методов качественного анализа. Таковыми могут быть, например, спектры поглощения в ультрафиолетовой, видимой и инфракрасной областях спектра, данные масс-спектрометрического исследования и др. [c.443]

    Благодаря этому оба типа ионных процессов, несмотря па противоположный заряд растущих цепей, имеют общие черты. Это проявляется в существенном влиянии полярности среды на кинетику полимеризации и в зависимости скорости элементарных стадий процесса и микроструктуры полимера от природы противоиона. Известная аналогия между катионной и анионной полимеризацией имеется и в другом отношении, а именно, в возможности полного исключения реакций обрыва, что в свою очередь приводит к близости кинетики процесса в определенных системах анионного и катионного характера. Б то же время различие в заряде активных центров обусловливает избирательную способность многих мономеров полимеризоваться только по одному из двух ионных механизмов. Склонность к анионной полимеризации типична для мономеров ряда СН2=СНХ, содержащих заместители X, понижающие электронную плотность у двойной связи, например КОз, СК, СООК, СН=СН2. В наибольшей степени к анионной полимеризации способны мономеры, содержащие два подобных заместителя, например СН2=С(СК)2 или СН2=С(М02)з. Анионная полимеризация возможна также для насыщенных карбонильных производных и для ряда циклических соединений — окисей, лактонов и др. Инициаторами анионной полимеризации являются щелочные металлы, некоторые их органические и неорганические производные (металлалкилы, алкоксиды, амиды и др.), а также аналогичные соединения металлов II группы. Заключение об анионной природе активных центров основывается не только на качественных соображениях, но и на количественном анализе экспериментальных данных с помощью правила Гаммета. Это правило связывает значения констант скоростей реакци производных бензола с характеристиками их заместителей. Оно формулируется в виде уравнения [c.336]

    Качественно реакцией на элементарную серу (и сероводород) служит также ртутная проба. Этот анализ заключается во взаимодействии топлива с металлической ртутью при комнатной температуре. Реакция может служить и для быстрой количественно оценки содержания элементарной серы. [c.235]

    Для открытия кислорода обычно не пользуются качественными реакциями. Его присутствие может быть косвенно установлено при полном количественном элементарном анализе (по разности). Кислород может быть определен также прямым количественным методом (см. стр. 43). [c.38]

    В каждой группе сплавов различают типы сплавов, например для алюминиевых сплавов — дуралюмин, силумин и магналий. По элементарному составу эти три типа сплавов близки между собой, но они отличаются по количественным соотношениям компонентов. Так, для дуралюмина характерно высокое содержание меди — до 4—5%, для силумина — высокое содержание кремния— до 10—13%, а для магналия — высокое содержание магния—до 10%. При помощи пробирочного качественного анализа не всегда возможно различить эти три сплава между собой. Применяя полуколичественные методы анализа, а также современные ускоренные методы (капельный анализ), описанные ниже (стр. 603), часто представляется возможным производить сортировку сплавов по типам, а в некоторых случаях и более [c.591]

    Этот том представляет собой капитальное справочное руководство по органическому анализу во всех его аспектах. В нем рассмотрены прежде всего методы элементарного анализа органических соединений, как качественного, так и количественного, включая органический микроанализ. Большую часть труда занимает изложение методов исследования важнейших функциональных групп и основных классов органических соединений. В книге содержатся также главы по газообъемным методам анализа, определению температур плавления, затвердевания, кипения и конденсации, термическому анализу органических молекулярных соединений, хро.матографии и анализу смесей растворителей. Охвачена литература по 1952 г. [c.229]

    При моделировании процесса ионного обмена, по какому бы из указанных выше направлений не велось исследование, один из самых его ответственных этапов — это качественный и количественный учет неравновесности ионного обмена, обусловленный элементарными диффузионными процессами как в пограничном слое, окружающем зерно ионита, так и внутри самого зерна, а также собственно химическим актом между обменивающимися ионами и матрицей ионита (см. гл. И). Учет этот может быть осуществлен различными путями либо кинетическим анализом процесса и его механизма — путем использования экспериментальных данных и зависимостей для установления численных значений отдельных параметров модели и связи между ними, либо непосредственной оценкой перечисленных выше факторов неравновесности при составлении системы дифференциальных уравнений описывающих процесс. Широкое использование ЭВМ позволяет объединить эти пути, не упрощая при этом излишне модели, например, при описании переноса вещества через пограничный диффузионный слой. Так, модель массопереноса при ионном обмене включает в общем случае описание диффузии внутри ионита, переноса вещества на границе раздела взаимодействующих фаз, конвективной диффузии в сплошной фазе с учетом гидродинамической обстановки в слое ионита и т. д. [c.94]


    В 1960 г. была предложена схема анализа, основанная на прямом потенциометрическом титровании (рис. 4) однако полностью исключить из нее химические методы не удалось [5]. Большое ее достоинство — возможность определения группового состава сернистых соединений во фракциях, выкипающих до 380 °С (в том числе в дизельных топливах). Вначале в образце известными методами определяют содержание общей серы, затем качественно устанавливают присутствие сероводорода, элементарной серы и меркаптанов. При их наличии освобождают навеску от сероводорода подкисленным водным раствором хлористого кадмия, затем потенциометрически определяют содержание элементарной серы и меркаптанов. Титрование проводят в атмосфере азота. В другом образце, также не содержащем сероводорода, методом потенциометрической иодатометрии находят содержание сульфидной серы. По этой схеме меркаптановую серу определяют титрованием не А ЛЮя, а аммиакатом серебра ([Ag(NHg).2]NOз), не оказывающим влияние на сульфиды. Точность анализа при работе по этой схеме выше, чем по ранее описанным. [c.88]

    Для идентификации привитых и блоксополимеров чаще всего применяют гравиметрический и элементарный анализ в сочетании с УФ- и ИК-спектроскопией, позволяющими установить состав полученного продукта, а в ряде случаев и наличие химических связей между полимерными компонентами. Следует упомянуть также о возможности количественного определения состава привитых и блоксополимеров при помощи оптического и пикнометрического методов, а также ультрацентрифугированием , которые не нашли пока широкого применения. Для подтверждения образования привитых продуктов часто используют качественные или полуколичественные [c.370]

    Для составления уравнений окислительно-восстановительных реакций необходимо знать, во что превращаются исходные вещества в результате процессов окисления-восстановления. Учитывая, что число наиболее распространенных окислителей и восстановителей, применяемых в качественном и количественном анализах, невелико, а также, зная среду, в которой протекает реакция (pH раствора), часто можно заранее предвидеть конечные продукты окисления и восстановления. Легче всего составить уравнение реакции окисления-восстановления между простым веществом и элементарными ионами или между элементарными ионами. Например, для освобождения раствора от ионов Ag+ иногда применяют восстановление этих ионов металлическим железом или цинком. Составим уравнение такой реакции. Реакция протекает по схеме [c.295]

    Математическая модель роста популяции, созданная в предположении независимости элементарных актов клеточного уровня (бинарного деления) от взаимного влияния особей, не способна описать поведение популяции в реальных условиях ее существования. Переход к попыткам описания закономерностей именно на популяционном уровне неизбежно приводит к тому, чтобы отказавшись от идеализированной схемы, учитывать те закономерности, которые характеризуют этот уровень биологических систем. Такой качественной особенностью популяции как локального представителя вида является внутривидовая борьба, которая может принимать формы взаимного ингибирующего влияния, своеобразного каннибализма, конкуренции за субстрат к тому же само по себе исчерпание субстрата при культивировании микроорганизмов периодическим способом также должно учитываться при анализе процессов роста п размножения микроорганизмов. [c.61]

    Физико-химический анализ обуглероженного слоя дает определенные сведения о свойствах материала, механизме абляции и механизме его разрушения . Элементарный химический анализ обуглившегося слоя показывает преимущественную потерю определенных элементов (см. рис. 2) и возможное осаждение углерода на стенках пор в результате термического разложения газообразных продуктов. Образование новых химических соединений, например карбида кремния, можно обнаружить методом дифракции рентгеновских лу-чей 94 Общая пористость обуглероженного слоя определяет объем пустот, образующихся при высокотемпературном разложении пластмассы, и косвенно отражает ее сопротивление воздействию механических сил. Распределение пор по размерам в обуглероженном слое показывает его склонность к растрескиванию и относительную эффективность теплообмена между раскаленным обуглероженным слоем и газами, образующимися в процессе абляции. Для определения структуры пор и характера взаимодействия между микрокомпонентами материала можно также использовать микрофотографирование в обычном и поляризованном свете . Очевидно, что для характеристики поведения и свойств пластмасс в газовых средах при высоких температурах необходима как качественная, так и количественная информация . Объем и степень достоверности информации, необходимой для оценки эксплуатационных свойств материалов, зависит от методов и условий испытаний. [c.430]

    Использование иммерсионного метода и элементарных кристаллооптических определений повышает надежность и в ряде случаев упрощает методику качественного микрохимического анализа. Внешний облик кристаллов часто меняется в зависимости от примесей, условий кристаллизации и т. п. Проверка показателей преломления и других кристаллооптических свойств продуктов микрохимических реакций дает возможность их идентификации независимо от формы кристаллов и в ряде случаев позволяет обойтись без разделения элементов на аналитические группы (см. монографии [1—4], а также статьи [5—9]). [c.262]

    Анализ высокомолекулярных соединений предусматривает определение ряда физических характеристик полимеров растворимости, температуры размягчения или плавления, температуры каплепадения, полидисперсности полимеров, молекулярного веса, а также химический анализ, включающий элементарный анализ, качественное и количественное определение примесей мономерных органических продуктов. [c.194]

    К недостаткам качественного спектрального анализа можно отнести его непригодность для обнаружения таких элементов, как азот, кислород, сера, галогены, а также тот факт, что он является деструктивным методом анализа, при котором разрушается анализируемый образец. Кроме того, метод не очень удобен для небольших лабораторий, в которых выполняются единичные анализы, из-за дороговизны аппаратуры. Однако для массовых анализов в тех случаях, когда скорость и высокая чувствительность явля от-. ся основными требованиями, эмиссионный спектральный анализ оказывается иключительно удобным методом качественного исследования. Поэтому он нашел широкое применение в качественном анализе природных объектов (солей, минералов, руд, воды), металлов и сплавов, многих промышленных материалов и продуктов (красителей, лаков, керамических изделий и др.). Без преувеличения можно сказать, что сегодня этот метод наиболее широко используется для качественного элементарного анализа неорганических образцов (подробнее см, в гл, ХП), [c.192]

    Вещество I (рис. 1) на основании качественных цветных реакций было отнесено к фенолкарбоновым кислотам. В результате изучения продуктов ацетилирования, щелочного расщепления, а также данных элементарного состава и спектрального анализа в УФ-области, установлено, что исследуемое соединение представляет собой 3,4-диоксикбричную кислоту, идентичную кофейной. [c.54]

    Если еще несколько десятилетий назад основной задачей химического анализа было установлеяие элементарного состава вещества в отношении основных и побочных компонентов на уровне их содержаний в пробе, заведомо превышающем сотые доли процента, то практика химических исследований нашего времени требует от химика-аналитика проведения надежных анализов на уровне миллионных долей процента. В связи с бурным развитием новых областей науки и техники— электроники, атомных, космических, биохимических исследований — в повестку дня встал целый ряд специфических задач анализ малых и ультрамалых количеств вещества, локальный анализ микронеоднородности химического состава образца и др. Вместе с тем существенно усложнился и уровень, на котором проводится химический анализ. Химиков-исследователей нашего времени интересует не только атомарный состав вещества, но, и качественная и количественная характеристика структуры вещества на уровне функциональных групп и иных многоатомных фрагментов, а также последовательность и порядок их сочетания в соединениях высшего порядка. Естественно, что при решении задач подобного рода возникает. объективная необходимость оценки надежности результатов и возможных ошибок различной природы, неизбежно сопутствующих химическому анализу. [c.4]

    После расшифровки рентгенограммы или дифрактограммы определяют брег-говские углы (01, 02,. ..), а затем по закону Вульфа - Брегга рассчитывают постоянные решетки соответствующих систем плоскостей ( / , 2, /3. ..) н параметры элементарной ячейки, после чего строят модель ячейки данного полимера. С этой целью по распределению электронной плотности устанавливают координаты всех атомов с учетом конфигурации и конформации макромолекулы. При невозможности применения расчетного метода используют шаровые модели Стюарта - Бриглеба и метод проб и ошибок . Для построения моделей ячеек применяют метод просвечивания одноосно ориентированных образцов, тогда как порошковый метод используют главным образом для качественной характеристики полимеров, а также лля определения размеров кристаллитов и степени кристалличности (рентгенофазовый анализ). [c.146]

    Для качественного определения гидроксильной группы в большнн стве случаев прибегают к образованию хорошо кристаллизующихся сложных эфиров. Этим же методом часто пользуются, чтобы соединение, содержащее гидроксильную группу, выделить из смеси с другими веществами. После омыления эфира можно идептифицировать кислотный остаток, входивший в соединение (уксусная кислота), или с помощью элементарного анализа определить состав полученного эфира. Необходимо отметить, что амины и меркаптаны при некоторых из нижеприведенных реакций также дают производные, содержащие кислотный остаток. [c.17]

    Очень перспективным для решения задач элементарного качественного анализа оказался и другой спектральный метод — рентгено-флуоресцентный анализ. Суть метода состоит в том, что анализируемая проба облучается рентгеновскими лучами, которые выбивают электроны с ближайших к ядру орбиталей. Освоболаденные места занимают электроны, переходящие с более отдаленных орбиталей. Выделенная при этом значительная энергия освобождается в форме квантов с высокой частотой, также соответствующих области рентгеновских лучей, но с большей длиной волны, чем у возбуждающего излучения. Так как энергия излученных квантов является интенсивным свойством, характеризующим данный элемент, то при помощи исследования частоты вторичного рентгеновского излучения можно судить об элементах, входящих в состав пробы, т. е. хешать задачи качественного анализа. Принципиальная схема прибора для рентгено-флуо-ресцентного анализа представлена на рис. Vni.5. [c.193]

    КРИСТАЛЛОХИМЙЧЕСКИЙ АНАЛИЗ — качественный анализ хим. состава материала по форме кристаллов. Предложен русск. кристаллографом Е. С. Федоровым в начале 20 в. Основывается на законе постоянства кристаллических углов, а также на теории строения кристаллов, согласно к-роп все кристал-личзские решетки образуются в процессе однородных деформаций растяжений и сдвигов из четырех идеальных решеток. Три из них — кубические (простая, центрированная, центрогранная), четвертая — гексагональная. На кристаллах статистически доминируют те грани, плоские сетки к-рых наиболее густо усажены элементарными частицами (т. е. обладают наибольшей плотностью). Поэтому четырем типам решеток соответствуют различные доминирующие грани. Тем самым создается возможность по форме кристаллов определять (хотя бы приблизительно) типы их решеток, т. е. схему внутренней структуры. Кристаллы с подразделением на кубический и гексагональный типы с соответствующими решетками сведены в спец. таблицы, пользуясь к-рыми определяют вещество исследуемых кристаллов. С этой целью измеряют кристалл на гониометре, придают ому на проекции однозначное положение и вычисляют несколь- [c.664]

    Преимущества качественного масс-спектрометрического анализа значительно возрастают при условии, что один из исследуемых продуктов реакции получен из исходных веществ известного состава. Рассмотрим, например, реакцию циклопентанона с н-бутиламином в газовой фазе при 300—350° в присутствии катализатора и без него. Эта и другие аналогичные реакции являются частью исследования термического распада найлона 6,6 [566]. Не касаясь в настоящем разделе подробно вопроса относительно химизма этого процесса, остановимся лишь на масс-спектрометрической идентификации двух продуктов реакции. Циклопентанон имеет формулу sHgO и номинальный молекулярный вес 84 молекулярный вес бутиламина — 73, а формула — 4HiiN. Многие продукты реакции могут быть идентифицированы без выделения их из смеси и благодаря тому, что известна формула исходного соединения идентификацию можно осуществить только по пикам молекулярных ионов. Ранее упоминалось, что масс-спектрометрия позволяет устанавливать точную молекулярную формулу неизвестного соединения или каждого из соединений, присутствующих в смеси. Результаты можно сопоставить с данными элементарного химического анализа по соотношению С N Н О. Благодаря этому устанавливают, все ли присутствующие компоненты обнаружены. Другими словами, при исследовании одного типа молекул не обязательно исследовать всю смесь. Так, например, один из компонентов смеси дает большой молекулярный пик с массой 150, который может быть идентифицирован даже без точного измерения масс следз ющим образом. Рассматриваемое соединение не образовано двумя молекулами бутиламина, поскольку молекулярный вес его больше, чем 2 X 73 = 146 оно также не могло образоваться в результате взаимодействия молекулы циклопентанона и бутиламина (масса 157), поскольку для этого в процессе реакции оно должно было бы потерять семь атомов водорода и поскольку продукт имеет четный молекулярный вес, так что в молекуле должно присутствовать четное число атомов азота. Возможный путь образования такого соединения — взаимодействие двух молекул циклопентанона (масса 168) с выделением массы 18. Известно, что при дегидрировании паров циклопентанона при повышенной температуре над активированной окисью алюминия образуется 2-циклопентилиденциклопентанон [c.447]

    Действительно, сравнение масс-спектров н-нонилмеркаптана X и н-октилового спирта указывает на качественное сходство основных путей фрагментации этих классов соединений (ср. рис. 3-6 и 2-3). Наиболее существенным отличием в этих спектрах является более высокая интенсивность молекулярного пика меркаптанов (ср. также тиоэфиры и простые эфиры). Даже в масс-спектре ундецилмеркаптана СиНгзЗН интенсивность молекулярного пика составляет 7% от интенсивности основного пика [8]. Высокая интенсивность молекулярных пиков в масс-спектрах меркаптанов имеет особо важное значение потому, что дает возможность обнаруживать присутствие серы без элементарного анализа по наличию пика с величиной т/е на две массовых единицы выше, чем у молекулярного иона (природное содержание изотопа составляет 4,4 °/о). [c.81]

    Селеноцианомеркуратион, как реагент 6321 Селитра аммиачная определение влаги в плаве 3975 гидрофобной добавки 7667 концентрации плава 3323 Семена определение влаги 4905, 7143, 7842 жира 7727, 7788, 8020 масляничности 6890, 7935, 7939, 8068 отбор средних проб 2526 Семена хлопковые, определение госсипола 7934 Сера см. также элементарный органический анализ изучение спектральных. линий К 3 Группы 1162 качественная проба на активные сернистые соединения в нефтепродуктах 7860, 7868 определение 3118, 3120, 3844, 4133, 41.34, 4136, 5057, 6182 в бензине 6648 [c.385]

    Предлагаемая вниманию читателя 3-я часть книги Вейганда посвящена изложению современных методов качественного и количественного микро- и макроанализа, а также описанию методов определения физических констант органических соединений. Описание методов (элементарный анализ, определение фз нкцио-нальных групп, определения удельного веса, точек плавления и кипения, молекз лярного веса и т. д.) сопровождается большим количеством конкретных практических советов и указанш , представляющих интерес для опытного экспериментатора и помогающих успешному проведению анализа даже и в том случае, если у экспериментатора нет достаточного опыта в аналитической работе. [c.5]

    Несмотря на то, что возможности качественного анализа достаточно велики, в некоторых случаях заключение о природе исследуемого вещества может быть дано только на основании совокупности данных качественного, количественного, микрохимического, рентгеноструктурного анализов и других методов исследования. Например, разнообразие силикатных пород в природе очень велико. Однако элементарный состав их во многих случаях одинаков, но они отличаются друг от друга количественными соотношениями компонентов, а также кристаллической структурой. Подвергать силикаты качественному исследованию будет недостаточно вопрос о природе силиката сможет быть разрешен на основании данных количественного химического анализа, а также кристаллографического и рентгеноструктурного исследований. В некоторой степени это относится к анализу металлов и сплавов. Применяя методы классического качественного анализа, можно рассортировать чистый алюминий, алюминиевый сплав и магниевый сплав. Но бывает затруднит1 11ьно решить вопрос о марках алюминиевого сплава, которые связаны с различным количественным содержанием одного и того же компонента (Си, Мд, 51 и др.). В этом случае детальная сортировка сплавов [c.583]

    Обнаружение функциональных групп, которое рассматривалось в предыдущей главе, известно под названием анализа органических соединений по функциональным группировкам—название исключительно меткое . Наряду с этим методом давно известен элементарный органический анализ, т. е. качественное и количественное определение элементов, из которых состоит исследуемое вещество. Кроме того, существуют еще и методы идентификации индивидуальных органических соединений, в которых используются свойства всей молекулы. Эти методы основаны на определении физических свойств, связанных со структурой и размерами молекулы органических соединений. К таким свойствам относятся температуры плавления, температуры кипения, удельный вес, а также оптические свойства различных соединений. Определяют температуру плавления или кипения исследуемого вещества или готовят его смеси с заранее известными веществами и наблюдают за температурами, присущими, например, эвтектическим смесям. В последнее время этот метод стал применяться для исследования микроколичеств органических веществ и их смесей, что является определенным шагом вперед. Полезность такого метода со временем, несомненно, станет еще более очевидной. Для эбулиоскопи-ческого или криосконического методов определения молекулярного веса используют расплавы или растворы исследуемых веществ в различных растворителях. Для подобных определений можно использовать производные исследуемых веществ, которые в некоторых случаях обладают более характерными свойствами. Оптическими методами определяют коэффициенты преломления, оптическую активность, спектры поглощения в ультрафиолетовой и инфракрасной области спектра, спектры комбинационного рассеяния, форму и оптические свойства кристаллов и др. [c.426]

    Доля урана, выпавшего в осадок, зависит от соотношения концентраций урана и лимонной кислоты, а также от концентрации водородных ионов (рис. 4). Цвет осадка зависит от значения pH темно-зеленый осадок выпадает при pH ——0.6 и pH > 3 светло-серый — при pH=0.5. В табл. 2 представлены данные элементарного анализа осадков урана. Качественный анализ на хлор показал, что перхлорат-ион осадком не захватывается. Из данных табл. 2 следует, что вторая и третья формы осадка, по-видимому, имеют одинаковый состав 1)3 14 с отношением Си (IV) < НзСи=1 1-и отличаются только количествами молекул воды, на что указывает различное процентное содержание водорода. [c.6]

    Анализ вещества следует начинать с наблюдения физических свойств отметить его цвет и запах и далее подвергнуть вещество тщательному осмотру с помощью лупы или под микроскопом. Таким путем можно получить некоторые указания на присутствие в исследуемом веществе определенных компонентов. Например, наличие в исследуемой смеси синих кристаллов может служить указанием на содержание меди. Однако такого рода предварительные указания должны быть сопоставлены с результатами химического анализа. Нужно помнить, что медь может находиться не только в виде синих кристаллов медной соли, но также в виде черной окиси СиО. Марганец может быть как в виде розовых кристаллов солей, так и в форме серо-черной двуокиси МпОг. Олово может быть дано в виде темно-бу-рого моносульфида 5п8, желтого дисульфида ЗпЗг, черно-фиолетовой моноокиси 8пО, бесцветных кристаллов 8пС1г или НгЗпОз, и т. д. Так как элементарный качественный анализ не может дать определенных указаний о фазовом (вещественном) составе исследуемой смеси, а многочисленные возможные ее компоненты могут обладать самыми разнообразными окрасками, то неоспоримым основанием для суждения о составе задачи должен явиться химический анализ исследуемой смеси. [c.248]

    Этому вряд ли приходится удивляться, если, помимо того что индуцированный шумом переход в модели Ферхюльста не может быть непосредственно отождествлен с критической точкой, мы учтем то, о чем говорилось в разд. 6.3. Как подчеркивалось там, состояние системы описывается случайной переменной Хг. Именно с этой фундаментальной величиной, а не с моментами, даже не всегда характеризуюпдими случайную величину, необходимо иметь дело. Распространенное мнение о том, будто моменты полностью характеризуют случайную величину, восходит к анализу систем с внутренними флуктуациями, которые макроскопически малы. Некритическое распространение понятий, развитых для описания малых ситуаций, на ситуации с внешним шумом чревато опасностью и препятствует подлинному пониманию всего круга явлений, связанных с внешним шумом. Если в системе имеются флуктуации, то единственным надежным отправным пунктом служит то тривиальное обстоятельство, что состояние системы описывается случайной величиной. В разд. 6.3 мы показали, что стационарный случай удается строго обосновать, опираясь на этот твердо установленный факт. Переход происходит при условии, если случайная величина — индикатор состояния системы, а не какая-то производная от нее величина (например, моменты) претерпевает качественное изменение. Это качественное изменение функциональной зависимости для отображения, действующего из пространства элементарных событий в пространство состояний, в силу принятого нами соглашения (2.15) эквивалентно качественному изменению в распределении вероятности. Как лучше отследить такое качественное изменение — вопрос, представляющий несомненный практический интерес. В разд. 6.3 мы показали, что по аналогии с детерминированным случаем это лучше всего делать, исследуя поведение экстремумов стационарной плотности вероятности рзМ. (Единственным исключением является переход от вырожденной к подлинно случайной величин е,, при котором в качестве наиболее подходящего параметра выступает дисперсия. Мы видели также, что экстремумы имеют особый физический смысл. Их можно отождествить с макроскопическими фазами системы и использовать для задания параметра порядка перехода (как было показано в разд. 6.5). Короче говоря, для того чтобы уста новить, наблюдается ли критическое замедление в индуцированных шумом критических точках, нам необходимо исследовать динамику случайной. личины X , т. е. релаксацию одной функциональной зависимости к другой По причинам, подробно изложенным в разд. 6.3 и повторенным выше, это удобнее всего делать, прослеживая динамику экстремумов. Неудивительно поэтому, что, как будет показано ниже, критическое замедление [c.206]

    Система железо — углерод более сложна, чем система железо — азот, и в меньшей степени изучена. При экспериментальном изучении этой системы, а также системы Fe—С—N возникают трудности из-за возможного отложения элементарного углерода на образце и окисления железа при образовании карбидов за счет газов, содержащих окись углерода. В настоящее время не имеется точных хихмических методов, позволяющих отличить элементарный углерод от карбидного (см. [6, 7]). При помощи термомагнитного анализа можно получить качественные и во многих случаях количественные аналитические данные для образцов, содержащих карбиды железа [7—9]. Этим путем были исследованы следующие карбиды  [c.262]

    На основании некоторых предварительных экопериментов, качественного анализа кинетических кривых, а также так называемых ббщих представлений, которые являются отражением опыта всей химии, составляют предварительную кинетическую схему процесса, для чего записывают последовательность элементарных стадий в форме химических уравнений. [c.19]

    Модель свободной конвекции вдоль вертикальной поверхности качественно сохраняется также и для наклонной стенки, горизонтальных труб и шаров, что существенно для практики, поскольку потери теплоты с наружной поверхности теплоизоляции паропроводов зависят от интенсивности теплоотдачи за счет свободной конвекции окружающей среды. При анализе процесса на элементе наклонной поверхности учитывается, что часть архимедовой подъемной силы нагретой среды компенсируется реакцией наклонной стенки и в первое уравнение системы (4.57) войдет множитель з1пф, где ф — угол на рис. 4.11. Результаты расчета для каждой элементарной площадки с соответствующим наклоном интегрируются по ф для получения среднего по поверхности коэффициента теплоотдачи. Средняя интенсивность теплоотдачи для невертикальных поверхностей оказывается меньшей. Одно из предложенных критериальных уравнений для ламинарной свободной конвекции около горизонтальных труб имеет вид [18] [c.76]

    Проведенный нами термографический анализ ионитов показывает, что термограммы являются наглядной качественной характеристикой термостойкости ионитов. Исследование наряду с термограммами изменения целого комплекса свойств ионитов под влиянием термического воздействия дает возможность получить не только качественную термическую характеристику ионообменной смолы, но и сведения о механизме происходящих процессов, а иногда и полностью раскрыть последний. Так, путем изучения изменения обменной емкости, потери веса ионита при различных температурах, состава газообразных продуктов разлон ения и кинетики их выделения при прогреве ионита, а также сопоставления инфракрасных спектров и элементарного состава образцов до и после прогрева однозначно доказано, что эпдоэффект, имеющий место при прогреве Н-формы катионита КБ-4 в области температур 200—220° С, соответствует выделению воды из ионита вследствие протекания реакции образования циклического полимерого ангидрида [ ]. Сравнение данных по элементарному составу, избирательным свойствам и обменной емкости исходных и подвергнутых термическому воздействию образцов катионита КУ-2 показывает, что второй эндоэффект на термограммах Н-формы этого ионита может быть приписан отщеплепию сульфогрупп, а так5ке реакции образования сульфоновых связей [ ]. [c.67]


Смотреть страницы где упоминается термин Анализ также качественный элементарный: [c.211]    [c.349]    [c.75]    [c.2]    [c.202]    [c.145]    [c.174]    [c.181]    [c.18]   
Газо-жидкостная хроматография (1966) -- [ c.404 , c.405 ]

Газо-жидкостная хроматография (1966) -- [ c.404 , c.405 ]




ПОИСК





Смотрите так же термины и статьи:

Анализ качественный

Элементарный анализ



© 2025 chem21.info Реклама на сайте