Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хроматография полимеров

    Пиролитическая газовая хроматография полимеров представляет собой метод, который связан с быстрым нагреванием полимера у входа в хроматографическую колонку в токе газа-носителя. При высокой температуре происходит пиролиз полимера на осколки, которые благодаря достаточно высокому давлению паров проходят через газохроматографическую колонку. [c.196]


    При работе с новым видом сорбента или с новой партией следует упаковать сначала короткую колонку (10—12 см) при относительно невысоком давлении (20—25 МПа). При хорошем результате можно попытаться упаковать более длинную (200—250 мм) колонку при высоком давлении (40—60 МПа). Если эффективность увеличится примерно вдвое одновременно с увеличением сопротивления потоку в два раза, значит сорбент прочен, его можно использовать при таких параметрах набивки. Если сопротивление потоку возрастет в 2,5—6 раз, это значит, что сорбент непрочен и разрушается, образующаяся пыль резко увеличивает сопротивление колонки, нужно снижать давление при набивке. Особую осторожность следует проявлять при выборе давления для набивки силикагелей с широкими порами (более 10 нм) и с большим объемом пор, которые находят все более широкое применение в эксклюзионной хроматографии полимеров и в анализе биологических объектов — белков, полипептидов и др. [c.118]

    Влияние на адсорбцию полимеров химии поверхности адсорбента и природы растворителя. Влияние на адсорбцию полимеров размеров пор адсорбента. Адсорбция из растворов и адсорбционная хроматография олигомеров. Адсорбционная и ситовая хроматография полимеров. Адсорбция и хроматография белков и вирусов. [c.332]

    ЛЕКЦИЯ 18. ВЛИЯНИЕ ХИМИИ ПОВЕРХНОСТИ И ПОРИСТОСТИ АДСОРБЕНТА И ПРИРОДЫ РАСТВОРИТЕЛЯ НА АДСОРБЦИЮ И ХРОМАТОГРАФИЮ ПОЛИМЕРОВ [c.332]

    Адсорбционная и ситовая хроматография полимеров [c.337]

    Советские исследователи предложили теорию единого механизма жидкостной хроматографии полимеров на жестких гелях, из которой следует, что изменением параметров взаимодействия в системе полимер — сорбент — растворитель можно переходить от адсорбционного механизма к эксклюзионному и наоборот [22]. В общем случае в эксклюзионной хроматографии нужно стремиться полностью подавить адсорбционные и другие побочные эффекты, так как они, особенно при исследовании молекулярномассового распределения (ММР) полимеров, могут существенно исказить результаты анализа. [c.42]

    Наиболее распространенным детектором в эксклюзионной хроматографии полимеров является дифференциальный рефрактометр. При работе с этим детектором следует помнить, что в диапазоне примерно до 5-10 —5-10 его сигнал зависит от молекулярной массы полимера. Поэтому при исследовании полимеров, содержащих значительное количество низкомолекулярных фракций, в процессе обработки результатов нужно вводить соответствующие поправки или, если это возможно, проводить специальную калибровку детектора. Из детекторов, разработанных специально для анализа полимеров, следует упомянуть вискозиметрический детектор и проточный лазерный нефелометр (детектор малоуглового лазерного светорассеяния). Эти детекторы в комбинации с рефрактометром или другим концентрационным детектором позволяют непрерывно определять молекулярную массу полимера в элюенте. При их использовании отпадает необходимость калибровки разделительной системы по исследуемому полимеру, но обработка информации может осуществляться только на ЭВМ. Вискозиметрический детектор, кроме того, является очень удобным прибором для исследования длинноцепной разветвленности синтетических полимеров. [c.43]


    Капилляры с внутренним диаметром от 0,25 до 1 мм используют также для изготовления дозирующих петель к кранам-дозаторам. Для получения определенной вместимости петли лучше использовать более длинные капилляры с меньшим внутренним диаметром в этом случае размывание хроматографической зоны меньше. Из практических соображений обычно ограничиваются длиной петли до 20—25 см. В эксклюзионной хроматографии полимеров обычно применяют петли с внутренним диаметром не менее 0,5 мм, так как дозируемые растворы имеют относительно высокую вязкость. [c.181]

Табл. 43. Свойства растворителей для хроматографии полимеров Табл. 43. <a href="/info/23536">Свойства растворителей</a> для хроматографии полимеров
    Для хроматографии полимеров могут использоваться обычные нормально- или обращенно-фазовые, либо ионообменные процессы, основанные на связывании разделяемых молекул с поверхностью силами межмолекулярного взаимодействия. Примером такого подхода может служить обращенно-фазовая хроматография белков, позволяющая разделять компоненты, различающиеся балансом гидрофобных и гидрофильных свойств. Закономерности таких разновидностей хроматографии в общем напоминают наблюдаемые при разделении низкомолекулярных веществ. Главной- специфической особенностью является использование сорбентов с, большим средним диаметром пор — до 50 нм вместо 6—10 нм. В то же время упомянутые виды хроматографии малоселективны по отношению к родственным в химическом отношении полимерам, различающимся молекулярными массами. [c.332]

    Для получения силохромов с порами больших размеров (больше 60 нм) применяют гидротермальную обработку, позволяюш(ую одновременно устранять геометрическую неоднородность исходных аэросилогелей. Повышая давление пара воды в автоклаве до 15— 30 МПа, можно увеличить размер пор (1 до 500—2000 нм, и, соответственно, уменьшить 5 до 10 м /г. Объе пор и при этом не изменяется и, в зависимости от пористости исходного образца, составляет 1,2—1,7 см /г. Такие макропористые кремнеземы применяются для ситовой хроматографии полимеров, разделения вирусов и ихммобилизации ферментов. [c.50]

    На рис. 18.5 приведена зависимость времен удерживания фрак ций полиоксиэтиленов от молекулярной массы на одинаковых по геометрии силикагелях с разным химическим строением поверхности— с гидроксилированной поверхностью и поверхностью с привитыми алкиламинными группами. Химическое модифицирование позволило наблюдать переход от преимущественно адсорбционной хроматографии на сильно адсорбирующем полиоксиэтилены силикагеле с гидроксилированной поверхностью (рост удерживания с ростом молекулярной массы — кривая 1) к преимущественно ситовой хроматографии на образце со значительно слабее адсорбирующей поверхностью, модифицированной прививкой алкиламин-ных групп (уменьшение удерживания с ростом молекулярной массы— кривая 2). Из рисунка видно, что в данном случае переход к ситовой хроматографии полимеров значительно сокращает время анализа и меняет порядок выхода фракций полимера в зависимости от их молекулярной массы по сравнению с адсорбционной хроматографией. [c.338]

    Из всех вариантов ВЭЖХ в эксклюзионной хроматографии полимеров предъявляются наиболее жесткие требования к стабильности потока подвижной фазы. Поэтому нужно использовать насосные системы с точностью подачи не хуже 0,3—0,5%. В лучших насосах, разработанных специально для данного метода, нестабильность скорости потока снижена до 0,1%. [c.43]

    Точность результатов в эксклюзионной хроматографии полимеров заметно зависит от температуры. При ее изменении на 10 °С ошибка определения средних молекулярных масс превышает 10% [23]. Поэтому в данном варианте ВЭЖХ термостатирование разделительной системы обязательно. [c.43]

    Обычные электронные интеграторы, используемые в ВЭЖХ индивидуальных соединений, непригодны для обработки данных, получаемых при эксклюзионной хроматографии полимеров. Для этой цели используют мини-компьютеры, которые выполняют по специальным программам необходимые вычисления и выдают результаты опреде- [c.43]

    Как отмечалось выше, в настоящее время анализ полимеров проводят в основном на обычной хроматографической аппаратуре. Однако существуют и специальные приборы, предназначенные преимущественно для определения ММР полимеров. К ним относится, в частности, микрогельхроматограф ХЖ-1309. Технические характеристики хроматографа приведены в приложении 14.6. Этот уникальный прибор оснащен высокочувствительным лазерным рефрактометром с вместимостью кюветы 0,1 мкл [24] и микроколонками диаметром 0,5 мм с эффективностью около 30 тыс. т. т./м. Продолжительность анализа составляет 5-10 мин, а расход растворителя — приблизительно 100 мкл на один анализ, что позволяет работать с особо дефицитными и сверхочищенными растворителями. Калибровку прибора и обработку результатов проводят на ЭВМ с пакетом программ, обеспечивающих выполнение любых расчетов, необходимых в эксклюзионной хроматографии полимеров. [c.44]


    Разнообразие конструкционных решений, направленных на стабилизацию расхода растворителя, привело к тому, что ассортимент возвратно-поступательных насосов, выпускаемых различными фирмами мира, весьма широк. В то же время не существует насоса, имеющего наивысшие эксплуатационные характеристики для всех возможных областей применения. Хотя наиболее сложные и дорогие модели, естественно, дают наилучшие результаты, но для их эксплуатации требуется, высокая квалификация оператора и обслуживающего персонала. Так, в насосе с тремя головками вероятность засорения клапана значительно выше, а отыскать засоренный клапан гораздо труднее, чем в насосе с одной головкой. Поэтому такие насосы следует применять только при необходимости наивысшей точности подачи растворителя, например в эксклюзионной хроматографии полимеров. Можно считать, что в большинстве вариантов ВЭЖХ вполне удовлетворительную работу обеспечит насос с двумя головками, оптимизированной формой эксцентрика и регулированием расхода путем изменения частоты ходов поршня. [c.142]

    Наиболее целесообразно использовать предколоночный фильтр в эксклюзионной хроматографии полимеров, так как в этом случае вероятность присутствия нерастворимых частиц в анализируемых образцах гораздо выше, чем при анализе смесей индивидуальных соединений. При установке такого фильтра в систему с общей эффективностью 20000 т.т., включающую две эксклюзионные колонки длиной по 30 см, потеря эффективности составляет 10ОО—1500 т.т. [c.161]

    Применение адсорбционной хроматографии полимеров открывает широкие возможности для исследования макромоЛёк) в том числе адсорбции полимеров в их смесях с другимй полимерами й на- [c.83]

    Остаточные мономеры и низкомолекулярные неполимеризующиеся примеси, попадающие в полимерные материалы из исходного сырья и употребляемых в их производстве растворителей, крайне неблагоприятно действуют на эксплуатационные качества самих полимеров. Источником примесей органических растворителей в полимерных пленках могут оказаться также лакокрасочные материалы, используемые для нанесения украшений и надписей. Иногда летучие примеси попадают в пластмассы вместе с добавляемыми к ним пластификаторами. Наконец, в некоторых медицинских полимерных упаковочных материалах и изделиях содержатся остаточные количества окиси этилена, применяемой для их стерилизации. Большинство содержащихся в полимерных материалах летучих примесей — вредные и ядовитые вещества, а винилхлорид является канцерогеном, вдыхание которого приводит к раку печени. Содержание этих компонентов подлежит строгому нормированию и контролю, причем особенно жесткие нормы устанавливаются на материалы, предназначаемые для упаковки и хранения пищевых продуктов. В этом случае даже сравнительно малотоксичные летучие примеси, попадая в пищу, могут существенно изменить ее запах и вкус, снизить качество и сделать непригодной к употреблению. Определение следов летучих примесей стало, таким образом, одним из важнейших направлений аналитической химии полимеров. Применение для этой цели парофазного анализа представляется особенно целесообразным прежде всего потому, что вводить в хроматограф полимеры нежелательно и не всегда возможно. Однако парофазный анализ полимеров требует учета специфических свойств анализируемых объектов, подавляющее большинство которых представляет собой твердые материалы, плохо растворимые в обычных растворителях и разлагающиеся при сравнительно низких температурах. Казалось бы, самым простым решением задачи мог быть анализ равновесной газовой фазы над полимером, но диффузия летучих компонентов из твердого полимера к его поверхности затруднена и равновс  [c.138]

    Теория основана на следующих упрошающих предположениях. (Более подробно этот подход изложен в книге Б.Г.Беленький. Л.З.Виденчик. Хроматография полимеров. М. Химия. 1978. - Прим.ред.). [c.75]

    Хроматография. Можно без преувеличения сказать, что современная химия, и в первую очередь химия природных соединений, обязана своими достижениялш прежде всего применению хроматографических методов разделения. Однако хроматография полимеров представляет собой специфическую область, развитие которой связано с определенными трудностями. С одной стороны, даже молекулы однородного полимера, различающиеся молекулярным весом, могут обладать разной хроматографической подвижностью. С другой стороны, различие в растворимости или способности сорбироваться на примененном носителе между разными полимерами может быть недостаточным для хроматографического разделения, которое затрудняется еще больше склонностью разделяемых веществ к межмолекулярной ассоциации и образованию коллоидных растворов. [c.486]


Библиография для Хроматография полимеров: [c.77]    [c.123]    [c.234]    [c.123]   
Смотреть страницы где упоминается термин Хроматография полимеров: [c.112]    [c.693]    [c.201]    [c.196]    [c.80]    [c.502]    [c.326]    [c.410]    [c.196]   
Смотреть главы в:

Химия и технология высокомолекулярных соединений Том 4 -> Хроматография полимеров


Итоги науки химические науки химия и технология синтетических высокомолекулярных соединений том 6 (1961) -- [ c.299 ]




ПОИСК







© 2025 chem21.info Реклама на сайте