Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы разделения хроматографические с применением

    Эти закономерности адсорбции веществ из многокомпонентных растворов легли в основу хроматографии — метода разделения и анализа многокомпонентных смесей. Впервые этот метод был применен М. С. Цветом (1903 г.) для разделения на составные компоненты сложного растительного пигмента— хлорофилла. Пропуская раствор хлорофилла через слой оксида алюминия, помещенного в стеклянную трубку (колонку), М. С. Цвет обнаружил, что отдельные компоненты этого сложного вещества адсорбируются на разных уровнях по высоте колонки. В верхней части накапливается компонент, обладающий наибольшей адсорбционной способностью (рис. 68 а, компонент С), последующие зоны соответствуют компонентам со все более уменьшающейся адсорбционной способностью. Так как отдельные компоненты хлорофилла окрашены, то эти зоны легко различить по окраске. Такой окрашенный столбик адсорбента М. С. Цвет назвал хроматограммой, а сам метод анализа — хроматографическим, [c.176]


    Масс-спектрометрия в газовой хроматографии. Применение масс-спектрометрии для анализа газохроматографических фракций позволяет проводить качественный анализ компонентов разделенной в колонке смеси непрерывно, без выделения выходящ их из колонки веществ. Второе существенное преимущество метода состоит в том, что для масс-спектрометрии вполне достаточны даже те количества вещества, которые получают при анализе на капиллярной колонке. Таким образом, масс-спектрометр может выполнять функцию детектора. Такой метод сочетания хроматографического анализа с масс-спектрометрическим получил название хромато-масс-спектрометрии. [c.195]

    Удачное решение проблем разделения и анализа сложных смесей всегда оказывало плодотворное влияние на развитие науки и техники. Хроматографический метод — один из наиболее эфс к-тивных физико-химических методов разделения и анализа сложных смесей. Он применим к жидким и парообразным системам. Газовая хроматография, одна из наиболее эффективных разновидностей этого метода, применима практически к любым сколько-нибудь летучим веш,ествам и получила за последние десятилетия наиболее широкое применение для научных исследований и контроля производства в различных отраслях народного хозяйства. [c.7]

    Задача курса хроматографического анализа — ознакомить студентов с физико-химическими основами и применением одного из наиболее эффективных и широко использующихся в различных областях науки и техники методов разделения близких по химическим свойствам веществ — соединений благородных металлов, редкоземельных элементов, синтетических и природных органических соединений и т. п. Хроматографическими методами анализируют промышленные продукты, растительные материалы, лекарственные препараты, контролируют химический состав окружающей среды (воздуха, природных вод, почв), а также решают многие другие аналитические задачи. Благодаря своей простоте и высокой эффективности хроматографические методы часто применяют взамен известных классических методов разделения (осаждения, ректификации и др.). [c.3]

    Следовательно, можно повысить эффективность хроматографических и ионообменных методов разделения путем применения органических лигандов. Роль комплексообразующих органических реагентов может быть различной  [c.93]


    В последнее время применение хроматографического метода разделения нефтяных фракций расширило возможность их исследования. Однако в основном эти исследования подтвердили все сказанное выше в отношении состава нафтеновых углеводородов масляных фракций нефтей. [c.12]

    Применение хроматографического метода разделения хотя и не позволяет (по причинам, изложенным выше) выделить в чистом виде сернистые соединения, все же дает возможность получить концентраты сернистых соединений и тем самым изучить их свойства хотя бы в общем виде, что во многих случаях бывает важным. Выделению таких сернистых концентратов, содержащих до 6% S, из нефтей Северного Тексаса и Ближнего. Востока на активной окиси алюминия и некоторых других адсорбентах и исследованию этих концентратов посвящены работы С. Карра с соавторами [79]. Концентраты сернистых соединений из легких погонов (до 300° включительно) туймазинской нефти каменноугольных отложений исследованы Р. Д. Оболенцевым и Б. В. Айвазовым [80]. [c.53]

    Хроматографический метод разделения и выделения органических соединений получил очень широкое применение. Метод основан на избирательной адсорбции веществ из растворов. Разработаны самые различные, варианты этого метода [I, с. 44-66]. [c.43]

    Вообще говоря, современный хроматографический метод не ограничивается лишь возможностью разделения и анализа смеси веществ. Хроматография нашла весьма широкое применение также и как метод изучения свойств растворов и других систем. Поэтому хроматографический метод должен быть охарактеризован не только как метод разделения и анализа смесей, но и как метод научного исследования. [c.9]

    Таким образом, метод разделения смесей ионов на ионитах с применением комплексообразователей имеет очень широкие возможности. Следует только либо правильно выбрать соответствующий комплексообразователь для получения комплексов до хроматографирования и затем проводить хроматографическое разделение полученных комплексов, либо подобрать такой ионит, который обладал бы свойствами комплексообразователя и на нем проводить разделение смеси ионов. Успех разделения как в том, так и в другом случае зависит от правильного выбора ионита и реагента. [c.111]

    Следует упомянуть и о других видах дистилляционных методов разделения, таких, как экстрактивная дистилляция, азеотропная дистилляция и молекулярная дистилляция. Описание этих методов и области их применения можно найти в специальной литературе [58, 60, 61]. Физические методы перевода веществ в летучее состояние находят ограниченное применение. Их все больше вытесняют методы хроматографического разделения, требующие меньших затрат времени. [c.382]

    Преимуществом колоночной хроматографии является возможность количественного фракционирования больших количеств веществ без превращения их в какие-либо производные. Однако хорошее разделение часто возможно лишь при малых скоростях элюирования, поэтому были разработаны новые виды колоночной хроматографии. Методы аффинной и адсорбционной хроматографии основаны на избирательной адсорбции молекул на нерастворимом адсорбенте, который содержит группы (молекулы), специфически взаимодействующие с молекулами подлежащих очистке соединений, например ингибиторы (для очистки ферментов) или антитела (для очистки антигенов) в настоящее время эти методы нашли широкое применение и для разделения углеводов. Невзаимодействующие с адсорбентом примеси удаляются, а связанный с адсорбентом сахар затем десорбируют способом, не приводящим к его разрушению. Десорбцию можно осуществить, изменяя pH, ионную силу среды или применяя соответствующий ингибитор взаимодействия, удерживающего вещество на адсорбенте. Для разделения ряда полисахаридов были использованы иммобилизованные формы (см. разд. 26.3.7.6) конканавалина А [40], являющегося фитогемагглютинином (лектином), который специфически взаимодействует с разветвленными полисахаридами определенного строения в настоящее время применяют и другие иммобилизованные фитогемагглютинины. Колоночная хроматография на носителях, покрытых полиароматическими соединениями [41], также находит применение для разделения полисахаридов. Благодаря достижениям в производстве носителей для жидкостной хроматографии под высоким давлением можно осуществить хроматографическое разделение быстро и избирательно описаны методы фракционирования небольших олигосахаридов, продолжающегося менее 1 ч [42]. [c.224]

    Изложены общие теоретические основы аналитической химии и качес1 венный анализ. Рассмотрены гетерогенные (осадок — раствор), протолитические, окислительно-восстановительные равновесия, процессы комплексообразования, применение органических реагентов в аналитической химии, методы разделения и концентрирования, экстракция, некоторые хроматографические методы, качественный химический анализ катионов и анионов, использование физических и физико-химических методов в качественном анализе. Охарактеризованы методики аналитических реакций катионов и анионов, нх идентификация по ИК-спектрам поглощения. Приведены примеры и задачи. [c.2]


    Хроматографический метод разделения органических веществ был открыт русским ученым М. С. Цветом в 1903 г. и благодаря высокой эффективности нашел широкое применение в органической химии, [c.46]

    Уже сам М. С. Цвет понимал, что метод хроматографии в принципе применим не только для разделения окрашенных веществ, но и для выделения и очистки всевозможных неокрашенных органических соединений. Однако широкое применение хроматографический метод разделения веществ получил лишь в тридцатые годы, после того, как Кун и его сотрудники таким путем разделили а- и р-каротины, а также лу-теин и зеаксантин яичного желтка. [c.59]

    Современные теоретические представления о механизме хроматографических процессов в колонках или в тонких слоях (в том числе и на бумаге) возникли при рассмотрении адсорбционно-хроматографических закономерностей, открытых М. С. Цветом. По мере открытия новых хроматографических явлений, известные ранее закономерности в той или иной мере использовались для теоретической интерпретации наблюдений в области ионообменной, распределительной, осадочной и других разновидностей хроматографии. Такая преемственность в формировании теоретических концепций влечет за собой необходимость при обсуждений различных по механизму процессов хроматографии, объединяемых наименованием сорбционные процессы , исходить из сложившихся теоретических представлений об адсорбционно-хроматографических закономерностях и явлениях [5, 61. Это обстоятельство принято во внимание при изложении теоретических основ хроматографии как метода разделения гомогенных смесей (гл. I). Однако рассматривать здесь более подробно метод адсорбционной хроматографии нет оснований ввиду его ограниченного применения в анализе неорганических соединений. [c.10]

    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Выделенные компоненты определяют обычными химическими, физическими и физико-химическими методами анализа. Хроматографическое разделение на ионообменивающих сорбентах широко используется в практике количественного анализа. Нередки случаи, когда количественное определение веществ без пх предварительного хроматографического разделения невозможно. Применение хроматографии для разделения смесей во много раз ускоряет процесс анализа, уменьшает потери вещества. [c.205]

    Интенсивное развитие хроматографических методов разделения оптических изомеров проходило параллельно с развитием самой хроматографии, и большие достижения в этой области являются результатом углубленного изучения процессов хирального распознавания энантиомеров в хроматографических системах, совершенствования хроматографических методов разделения, особенно способов синтеза и структуры применяемых неподвижных фаз. Именно эти вопросы и составляют основу предлагаемой книги. Монография охватывает практически все современные хроматографические методы разделения оптических изомеров, дает их сравнительный анализ и показывает основные области применения. В этом плане предлагаемая книга является первой и пока единственной публикацией подобного рода в отечественной литературе, по- [c.5]

    Преимущество хроматографического метода перед другими физико-химическими методами анализа состоит в том, что в ряде случаев он применим тогда, когда другие методы разделения смеси оказываются непригодными. Метод дает возможность разделить малые количества веществ с очень близкими химическими свойствами. Хроматографический метод прост в выполнении и поэтому находит все большее применение для разделения самых разнообразных смесей неорганических и органических веществ. [c.477]

    Одним из самых ранних и наиболее широко используемых методов разделения является газовая хроматография (ГХ). Популярность этого метода обусловлена относительно легкой возможностью встраивания хроматографической аппаратуры в технологический цикл с целью контроля за протекающими процессами и широкой областью применения ГХ. Этот метод активно используется в нефтяной и химической промышленности. Для ознакомления с теорией хроматографии следует обратиться к ссылке [16.4-3] и гл. 5. [c.655]

    Современное развитие химических и биологических наук истребовало более глубокого проникновения в существо изучаемых процессов, детального анализа химического состава разнообразных смесей и биологических объектов. Кроме того, для химического и биотехнологического ироизводства, в том числе для промышленности лекарственных средств, характерны постоянное возрастание требований к чистоте выпускаемых продуктов, ужесточение методов контроля, тенденция к использованию количественных критериев ири оценке качества. Поэтому помимо оценки интегральных характеристик, присущих объекту исследования в целом, часто требуется детальное изучение содержания отдельных компонентов, определяющих состояние биологических систем либо качество химических продуктов. Рещение этих задач, как правило, невозможно без применения достаточно эффективных методов разделения сложных смесей. Среди таких методов доминирует хроматография. Бурно развиваясь в последние десятилетия, этот метод открыл возможности разделения смесей, содержащих десятки и сотни компонентов, их качественного и количественного анализа, препаративного выделения индивидуальных веществ. Принципы хроматографии весьма универсальны, благодаря чему она оказалась пригодной для изучения объектов самой различной природы — от нефти и газов атмосферы до белков, нуклеиновых кислот и даже вирусов. Этим объясняется огромный интерес представителей различных научных и технических дисциплин к хроматографическим методам. Только в пяти специализированных международных журналах по хроматографии ежегодно выходит в свет свыше 2000 публикаций ио различным вопросам теории и применения метода, общее же их число в несколько раз больше. [c.5]

    Существует большое число типов колонок для хроматографического разделения. Многие из этих колонок работают автоматически. Применение хроматографических методов разделения радиоэлементов оказалось весьма плодотворным для многих разделов радиохимии. Так, химия заурановых элементов своими успехами в значительной степени обязана хроматографическим методам исследования. [c.100]

    В настоящее время широкое применение получил хроматографический метод разделения, очистки, выделения и идентификации органических соединений благодаря высокой эффективности и простоты эксперимента. Метод основан на различии в подвижности веществ при прохождении их через двухфазную систему, что обусловлено различным взаимодействием их с компонентами фаз. Отличают три основных вида хроматографии адсорбционную, распределительную, ионнообменную. [c.45]

    В 1906 г. Цвет обнаружил, что если налить раствор хлорофилла, приготовленный из листьев, в верхнюю часть колонки с подходящим адсорбентом, образующаяся окрашенная полоса при последующем промывании колонки растворителем разделяется на ряд полос, движущихся с различными скоростями. Каждый компонент исходной смеси представлен отдельной полосой его можно получить в чистом виде, собирая разные растворы по мере того, как они выходят из колонки, или разрезая колонку по длине на части и вымывая пигмент из каждой такой части. Этот метод нашел широкое применение для разделения веществ, которые трудно разделить другими методами. Он оказался чрезвычайно ценным при обнаружении и разделении биологических веществ. Использование хроматографического метода для разделения радиоактивных веществ дает возможность обнаруживать и разделять очень малые количества этих веществ. [c.252]

    Для того чтобы обеспечить получение хороших количественных данных при анализе оксикислот методом ГХ, эти кислоты обычно превращают в производные по полярным ОН- и СООН-группам. В обзоре Радина [26], посвященном выделению, определению структуры и количественному анализу жирных оксикислот, ГХ рассматривается как метод разделения смесей этих кислот с целью их количественного анализа. Жирные кислоты, не содержащие гидроксильных групп, первоначально разделяли экстракцией растворителями, осаждением или хроматографическим методом. Некоторые типичные методы химических превращений жирных оксикислот в хроматографическом анализе показаны в табл. 3.5. В основном эги методы совпадают с методами, используемыми для превращения в производные по каждой из этих групп в отдельности (разд. II, А — II, Г гл. 1 для ОН-группы и разд. II, А настоящей главы для СООН-группы). По различным причинам (стремление избежать помех, ускорить или облегчить анализ, добиться более полного прохождения реакции и т. п.) применение одних производных предпочитают другим. [c.135]

    В процессах дистилляции, экстракции, абсорбции имеет место противоточное движение обеих фаз, тогда как при фильтрации движется только одна фаза, а другая остается неподвижной. Поэтому именно слово фильтрующийся определяет отличительную черту хроматографического метода от других физических методов разделения, основанных на применении двухфазных систем. [c.7]

    Хотелось бы надеяться, что изложенный в книге материал окажется полезным специалистам, занимающимся разделением оптических изомеров хроматографическими методами. Новые области применения хроматографии для разделения оптических изомеров еще только развиваются, особенно в разделах науки, связанных с живой природой, и я сочту свою задачу выполненной, если эта книга будет способствовать развитию данного направления. [c.8]

    Буквальное название хроматографии — цветопись — устарело, так как хроматографические методы применяют для разделения и определения не только окрашенных веществ. Применение хроматографии для разделения и определения окрашенных веш еств в настоящее время обусловлено в основном требованиями практики эта область применения хроматографии достаточно полно описана в химической литературе. Необходимо отметить заслуги Цвета (1903) в открытии и развитии хроматографического анализа. Предложенный им метод разделения и анализа веш еств (в первую очередь окрашенных) он назвал хроматографией. [c.342]

    Многие методы разделения с применением экстрагентов этого класса (наиболее часто используется Д2ЭГФК) основаны на извлечении из разбавленных растворов минеральных кислот. Как и при обычной экстракции, введение в экстракционно-хроматографическую систему нейтрального экстрагента (ТБФ, ТОФО) приводит к синергетическому эффекту. [c.281]

    В зависимости от поставленной задачи метод типового разделения монто варьировать, начиная от простого хроматографического разделения насыщенных и ароматичссюгх углеводородов и кончая весьма трудоемкой комбинацией различных методов разделения. В некоторых особых случаях, когда необходимость решения поставленной задачи оправдывает применение сложных и длительных методов, типовое разделение проводится возможно тщательнее, В качестве примера можно указать на исследование фракций смазочных масел сырой нефти Понка (Оклахома), проведенное Американским нефтяным институтом па Проекту б [36] под руководством Россини, Выделенный концентрат представлял собой 40000 часть исходной нефти. Ясно, что подобные исследования, требующие лшого времени, специального оборудования и высококвалифицированного персонала, могут предприниматься только в исключительных случаях, когда поставленная цель действительно оправдывает дорогостоящий процесс разделения, В каждом отдельном случае метод типового разделения должен быть выбран весьлю тщательно. Какие-то оиределенные правила для выбора метода разделения указать невозможно, хотя наличие оборудования, персонала и времени в этом отношении является решающим фактором. [c.365]

    Основным достоинством хроматографии является универсальность метода он пригоден для разделения практически любых веществ. Увеличение толщины слоя адсорбента (высоты хроматографической колонки) позволяет обеспечить высокую степень разделения даже близких по свойствам веществ, ионов. Это значит, что степень разделения можно регулировать. Метод пригоден для работы с макроколичествами и с мнкроколичествами веществ. Хроматографический метод разделения веществ легко поддается автоматизации. Эти достоинства обеспечили широкое прнмепенио хроматографии в производстве и научных исследованиях. В промышленности хроматографию применяют для получения высоко-чистых веществ (редкоземельных элементов, актиноидов и др.). Хроматография широко используется как метод физико-химического исследования. С ее помощью можно изучать термодинамику сорбции, определять молекулярные массы веществ, коэффициенты диффузии, давление паров веществ, удельные поверхности адсорбентов и катализаторов и т. д. Широкое применение хроматография получила в аналитическом контроле различных смесей веществ. Важным преимуществом хроматографии является быстрота и надежность проведения анализа, [c.176]

    Успешное развитие аналитической экспрессной системы контроля качества нефтяных и водных продуктов основано на методах авто-детекторной хемосорбционной индикаторно-жидкостной хроматографии. Сущность этих методов заключается в применении индикаторных сорбентов, обеспечивающих хроматографическое разделение анализируемых продуктов и детектирование образующихся зон адсорбции определяемых компонентов и примесей в индикаторных трубках. Производство индикаторных сорбентов было налажено на Щелковском химкомбинате, заводе Диатомит и Сорбполимере . Индикаторные сорбенты получают на основе ионного обмена и хемо-сорбционного комплексообразования в водных растворах индикаторов с последующей дегидратацией конечной продукции. В процессе ионного обмена в качестве модификаторов используются соли различных металлов, среди которых получили применение кобальт и серебро, обеспечивающие голубую, фиолетовую и розовую окраску индикаторных сорбентов. Для получения индикаторных сорбентов берут фракцию с крупностью 0,05-0,15 мм при соотношении сорбент модификатор — I 30, температуре 50-70°С, продолжительности модификации 30-50 мин. Дегидратацию проводят при 110 5 С в течение [c.121]

    Из всех вариантов газовой хроматографии наибольшее распрост-ранекие получил проявительный метод разделения и анализа сложных смесей в насадочных хроматографических колоннах. Однако для решения некоторых специфических задач, таких как определение микропримесей, анализ очень сложных смесей, экспрессный анализ и в ряде других случаев целесообразным оказывается применение некоторых вариантов, более или менее существенно отличающихся от общепринятого метода. Эти варианты могут осуществляться в рамках как проявительного, так и фронтального анализа. Из них наибольшее значение получили капиллярная хроматография, различные модификации хроматографии без газа-носителя, хроматермография и др. Некоторые варианты, например хроматермография и теплодинамический метод, были рассмотрены нами ранее. [c.137]

    Среди методов разделения веществ важное место занимают хроматографические методы, которые в последние годы находят все большее применение в аналитической химии. Хроматографию на бумаге и в тонких слоях применяют в качественном анллизе чаще, чем колоночную. Хотя основной областью применения хроматографии является органическая химия, в хроматографии неорганических веществ также достигнуты определенные успехи, о чем можно судить по постоянно растущему числу публикаций на эту тему. [c.85]

    Газо-адсорбционная хроматография (ГАХ) начала развиваться значительно ранее газо-жидкостной. Так, некоторые вопросы по динамике сорбции в противогазах, опубликованные в 1929 г. Н. П. Шиловым и его сотрудниками, близки к фронтальной газо-адсорбционной хроматографии. В 1931 г. Шуфтан применил газо-адсорбци-онный проявительный метод для разделения газообразных углеводородов, используя в качестве сорбента силикагель, а в качестве газа-носителя — диоксид углерода. В качестве детектора применялся газовый интерферометр. Разделяемые компоненты собирались в отдельные сборники и анализировались обычными классическими методами газового анализа. Позднее этот метод разделения углеводородов был усовершенствован в ЧССР Янаком и в СССР Вяхиревым независимо друг от друга. Метод был назван объемно-хроматографическим. Он нашел применение в анализе смесей углеводородных газов. [c.163]

    Понятие хроматография охватывает большое число методов разделения веществ, на первый взгляд довольно различных. Под хроматографией понимают распределение разделяемых веществ в двух фазах, из которых одна относительно неподвижная (стационарная), другая продвигается мимо первой (подвижная). Стационарная фаза представляет собой высокодисперсное вещество с большой поверхностью. Хроматографические методы находят очень широкое применение в науке и технике. Это объясняется тем, что в итоге хроматографического разделения веществ можно провести качественное и количественное определение их без особых дополнительных операций. Поэтому часто под хроматографией подразумевают и метод определения веществ. Преимуществами хроматографических методов являются такж сравнительно небольшие затраты времени и возможность работы с небольшими количествами веществ. [c.341]

    Наряду с тем, что метод с применением меченого ЫЭМ дает хорошие результаты в анализе белков, он представляется многообещающим и в определении очень малых количеств несвязанных низкомолекулярных меркаптанов. В нейтральном или слегка кислом растворе с избытком МЭМ соответствующая реакция идет быстро. Так, например, в случае г-цистеина эта реакция является количественной и завершается в пределах 2 мин при pH раствора от 5,4 до 6,6 [25, 36]. Быстро образуются и аддукты тиогликолевой кислоты, меркаптоэтанола, а также 2-амино-4-меркаптомасляной кислоты [26]. В принципе, при анализе низкомолекулярных соединений не требуется количественного гидролиза аддуктов до 5-сук-цинильных производных, однако он может способствовать отделению аддуктов от избытка реагента хроматографическим методом. В результате реакции меркаптана с МЭМ образуется производное, характеризующееся центром (новым) асимметрии, и этот фактор следует принимать во внимание при выборе метода разделения. Скорости реакций зависят от pH раствора, и кроме того, в воде эти реакции идут быстрее, чем в этаноле [36]. Это позволяет предположить, что реакция образования аддукта является скорее ионной, а не свободнорадикальной. С ЫЭМ реагируют также сульфидные, сульфитные и тиосульфатные анионы [37]. [c.355]

    Среди методов разделения элементов в различных степенях окисления распределительная хроматография на колонках занимает далеко не последнее место [121]. На колонках с силиконированным силикагелем были разделены двух- и четырехвалентное олово, трех- и пятивалентный мышьяк, трех-, четырех- и шестивалентный плутоний неподвижной фазой в этих опытах по хроматографическому разделению служил трибутилфосфат. Трех- и четырехвалентный церий, а также двух- и трехвалентное железо были разделены на колонках с фторопластом-3 (Kel-F) с применением органических растворителей (в первом случае трибутилфталата, а во втором — триоктилфосфинок-сида). [c.177]

    Хроматографический метод находит широкое применение в препаративной органической химии для разделения смесей, особенно тогда, когда другие методы оказываются непригодными. Некоторые химически родственные вещества обладают столь близкими температурами кипения и плавления или значениями растворимости в различных растворителях, что их слишком трудно разделить путем перегонки, кристаллизации или экстракции. Но даже сравнительно незначительная разница в строении их молекул, как, например, различное радцоложение двойных связей в изомерных ненасыщенных соединениях, обусловливает довольно большое различие в способности этих веществ адсор бироваться на поверхности твердых тел, что дает возможность разделить эти вещества на хроматографической колонке. [c.54]

    Однако широкое применение хроматографический метод разделения веществ получил лишь в тридцатые годы, после того как Кун и его сотрудники таким путем разделили а- и Р-каротины [88], а также ксантофил, лутеин и зеаксантин яичного желтка [89]. [c.335]

    В соответствии с минимальными размерами диаметров промежуточных каналов Баррером [2] были введены три категории молекулярных сит. Однако следует отметить, что эта классификация не точна, так как сорбционная способность некоторых сит, имеющих каналы больших размеров, но вода из которых полностью удалена, может быть сходна с сорбционной способностью цеолитов, имеющих узкие каналы. При тщательном выборе катионных форм цеолита их можно эффективно использовать для широкого ряда хроматографических разделений. Область применения данного метода может быть значительно расширена путем использования его при различных температурах, так как две молекулы, сорбирующиеся с одинаковыми скоростями при одной температуре, могут иметь совершенно разные скорости сорбции при понижении температуры сорбции. Так как сорбционная емкость цеолитов обычно намного больше для полярных молекул, чем для неполярных, то разделить эти две группы соединений очень легко. Это различие в сорбции позволяет использовать цеолиты для осушки газов. Создание в последние годы молекулярных сит типа Linde (см. стр. 75) позволило проводить такие процессы в заводских масштабах. Более того, при использовании для осушки газов молекулярные сита имеют большие преимущества по сравнению с такими реагентами, как активированная окись алюминия и силикагель, в особенности там, где требуется эффективно [c.67]


Смотреть страницы где упоминается термин Методы разделения хроматографические с применением: [c.221]    [c.403]    [c.5]    [c.170]    [c.204]    [c.503]   
Аналитическая химия фосфора (1974) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Методы разделения

Методы хроматографические

Методы хроматографического разделения

Разделение применение



© 2025 chem21.info Реклама на сайте