Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Дебая исследования структуры полимеров

    Исследование структуры высокомолекулярных соединений с помощью рентгеновского излучения основано главным образом на расшифровке рентгенограмм волокна, если принять при этом, что по наличию или отсутствию интерференционных полос на рентгенограммах можно различать кристаллические и аморфные полимеры. На этом основан метод определения степени кристалличности высокомолекулярных соединений. Поскольку (как уже указывалось) высокомолекулярные соединения никогда не бывают полностью кристалличными (полностью аморфное состояние, наоборот, не является редкостью), то приобретает значение определение степени кристалличности полимера. По Германсу, количество аморфной фракции пропорционально максимальной интенсивности возникающего расплывчатого кольца на рентгенограмме Дебая—Шерера. Получающиеся при этом значения можно дополнить и подтвердить калориметрическими измерениями. [c.197]


    При изучении структуры полимеров часто применяется метод Дебая и Шеррера. При этом методе, объектом исследования которого является поликристалл (кристаллический порошок), используется [c.325]

    Большой интерес представляет рассеяние света в однофазных студнях. Исследование светорассеяния позволяет высказать некоторые суждения относительно структуры студней и в первую очередь о молекулярном и надмолекулярном порядке, поскольку рассеяние света является следствием гетерогенности среды. Однако интенсивность рассеяния различна в зависимости от того, чем вызвана такая гетерогенность флуктуациями плотности жидкости, флуктуациями концентрации растворенного вещества или наличием микрочастиц иной фазовой природы. Для полимерных систем рассеяние в результате тепловых флуктуаций плотности мало. Флуктуации концентрации более значительны и позволяют согласно Дебаю вычислить молекулярный вес линейного полимера путем измерения рассеяния света разбавленными растворами. Особенно же велико рассеяние света крупными частицами фазового характера, что проявляется в мутности таких систем (эффект Тиндаля). Из теории рассеяния света частицами коллоидного размера, разработанной Ми, следует, что максимальное рассеяние наблюдается в тех случаях, когда размеры частиц лежат в пределах Ча—Чз длины волны падающего света. [c.72]

    Среди методов исследования полимеров в растворе одно из важнейших мест принадлежит светорассеянию. Заимствованный полимерной физико-химией у классической молекулярной оптики, этот метод был теоретически и экспериментально развит в применении к растворам полимеров Дебаем, а затем Зиммом в 1944—1948 годах. Важным этапом в его развитии явилась разработка методики двойной экстраполяции, предусматривающей изучение углового распределения рассеянного раствором света. Это повлекло за собой некоторое усложнение аппаратуры, но значительно расширило возможности и повысило надежность метода. За прошедшее после этого время светорассеяние превратилось в один из наиболее универсальных методов изучения свойств и структуры макромолекул. [c.5]

    Таким образом, методы исследования локальной конформации полимерных цепей оказываются практически идентичными тем которые применяются для исследования молекулярной структура низкомолекулярных соединений. В то же время методы изучени. конформации макромолекулы как целого в определенной степеш могут считаться специфическими для полимерных объектов. Одниг, tr из таких методов является рассеяние света, измерение которог о Дебай предложил использовать для характеристики размеров поли-, мерных цепей, размеры которых сравнимы с длиной волны Я. Анало- гичный подход использовался также в методе ренртеновской дифракции под малыми углами, что дало возможность исследовать микроструктуру полимеров на уровне элементов размерами порядка сотен ангстрем. В табл. III.1 дан перечень методов исследования структуры полимеров. Естественно, в определенных случаях удается получать косвенную информацию о конформации полимерной цепи в целом по результатам исследования локальной структуры макромолекулы на уровне сегментов. Следует также заметить, что методы исследования свойств растворов полимеров, служащие для характеристики конформации макромолекулы в целом, а также методы исследования набухания, динамических свойств и т. п., позволя- [c.162]


    НИИ о молекулах как о жестких диполях. Объяснил аномально высокую электрочувствптельность некоторых молекул под действием электрического поля наличием постоянного электрического момента. Исследовал (с 1912) дипольные моменты молекул в растворах полярных и неполярных растворителей создал теорию дипольных моментов. Именем Дебая названа единица измерения дипольных моментов. Предложил (1916) метод наблюдения дифракции рентгеновских лучей в кристаллических порошках и жидкостях, нашедший практическое применение в исследовании структуры молекул. Совместно с А. И. В. Зоммерфельдом установил (1916), что для характеристики движения электрона в атоме при действии магнитного поля требуется третье ( внутреннее ) квантовое число. Совместно с Э. А. А. Й. Хюккелем разработал (1923) теорию сильных электролитов (теория Дебая — Хюккеля), Открыл (1932) дифракцию света на ультразвуке и применил ее к измерению длины акустических волн. Занимался исследованием структуры полимеров. [c.165]

    При изучении структуры полимеров часто применяется метод Дебая и Шеррера. При этом методе, объектом исследования которого является поликристалл (кристаллический порошок), используется монохроматическое излучение. Так как кристаллы (кристаллические области) в таком порошке расположены под любыми углами, дифрагирующие лучи образуют систему конусов, ось которых совпадает с направлением первоначального луча (рис. 117). На фотопленке, помещенной перпендикулярно этой оси, появляются концентрические кольца, диаметр которых определяется углом между дифрагированными и исходными лучами. Следовательно, по радиусу этих колец можно, по условию Брегга, вычислить Лриод идентичности кристалла. [c.428]

    Очень низкие температуры (<30 К). Хотя исследования в этой области температур немногочисленны, тем не менее они позволяют составить представление о характере изменения теплоемкости твердых полимеров с температурой в зависимости от структуры полимера и от некоторых других параметров. Наиболее детально в этой области температур исследован полиэтилен, и результаты, полученные различными авторами, суммированы и проанализированы Ризом и Такером [23, 24] и Вундерлихом [3]. В этой области температур наблюдается линейная зависимость теплоемкости от степени кристалличности (рис. П.З). Эта зависимость, очень резкая при температурах ниже примерно 15 К, уменьшается при повышении температуры, исчезая примерно при 50 К. Экстраполяция на 100%-ную кристалличность и в область полностью аморфного полиэтилена показывает, что закон кубов Дебая выполняется лишь для полностью кристаллического полиэтилена при температурах ниже 9 К. Для аморфного полиэтилена и трех исследованных образцов этот закон не выполняется для них [c.56]

    Рентгенография имела огромное значение при исследовании высокомолекулярных веществ, в частности при изучении структуры природных и синтетических полимерных материалов, при выяснении природы явлений набухания и т. д. Анализ диаграмм Дебая—Шеррера позволяет во многих случаях установить период идентичности молекул полимеров и выяснить взаимное расположение их структурных элементов в пространстве, хотя все это требует чрезвычайно длительных и скурнулезных расчетов с применением счетных машин. Именно методами рентгеноструктурного анализа было установлено сложнейшее строение молекул таких зеществ, как пенициллин, витамин В12, гемоглобин и многих высокомолекулярных веществ. [c.54]

    Метод Дебая — Шерера имеет наибольшее значение для изучения структуры полимерных материалов. В частности, он широко используется для исследования ориентированных поликристаллических образцов. В процессе растяжения кристаллы оказываются определенным образом ориентированными относительно оси растяжения, поэтому на рентгенограмме ориентированных образцов появляется текстура — кольца вырождаются в дуги большей или меньшей длины. Такие картины дифракции называют текстуррент-генограммами (рис. 3.3, см. вклейку). Распределение интенсивности вдоль дуги характеризует степень ориентации кристаллитов относительно оси вытяжки. Для исследования полимеров наибольшее значение имеют текстуррентгенограммы предельно ориентированных образцов, когда все кристаллы ориентированы одной и той же осью (обычно ось с кристаллографической ячейки) вдоль направления растяжения. Такая ориентация называется аксиальной текстурой. Рентгенограммы этих образцов близки к точечным. Именно по таким рентгенограммам обычно определяют тип и параметры элементарной кристаллографической ячейки и период идентичности вдоль цепи. [c.81]

    Степень кристалличности и кристаллическая структура. По-лиформальдегидная смола характеризуется необычайно высокой степенью кристалличности [37]. Резкие рентгенограммы неориентированного полимера (полученные по методу Дебая — Шерера) и фазер-диаграмма высокоориентированного полимера, по существу, идентичны рентгенограммам классических полимеров формальдегида, кристаллическая структура которых исследована рядом авторов [45—49]. Известно, что кристаллическая решетка полиформальдегида состоит из гексагональных элементарных ячеек, относящихся к пространственной группе симметрии Сз—Р3 или Сз —РЗг с постоянными решетки а = 4,46А, с=17,ЗА. Через элементарную ячейку проходит одна спиральная макромолекула с периодом идентичности, включающим девять оксиметиленовых звеньев. Хаггинс [48] пришел к выводу, что число витков спирали, укладывающихся в период идентичности, составляет 5. Тадокоро и др. [49] приводят результаты рентгенографических исследований термически устойчивой полиформальдегидной смолы (дельрина), подтверждающие правильность модели Хаггинса. Некоторые характерные величины степени кристалличности, оцененной методом рентгеновского анализа, приведены в табл. 96. Показано, что степень кристалличности при переработке полимера методом прессования и при изменении молекулярного веса также меняется Температуру плавления диацетата полиоксиметилена определяли несколькими методами. Результаты приведены в табл. 97. [c.422]


    Теоретические исследования В. В. Тарасова в Московском химикотехнологическом институте им. Д. И. Менделеева (МХТИ, с 1945 г.) показали, что температурная зависимость теплоемкости некоторых классов кристаллических веществ при низких температурах не описывается предельным кубическим законом Дебая, что связано с особенностями кристаллической структуры этих тел и своеобразием молекулярных колебаний в них. Для веществ со слоистыми решетками, в которых взаимодействия частиц в параллельных плоскостях существенно больше, чем между плоскостями (графит, СсЛз), предельный кубический закон заменяется пропорциональностью квадрату температуры. В кристаллах, где имеются цепочечные образования более тесно связанных между собой атомов, предельным законом является прямая пропорциональность (многие полимеры) [А, 22]. Наблюдаются, естественно, промежуточные случаи. Это обобщение, подтвержденное опытом, стало основой для суждений о молекулярной структуре кристаллических веществ. Оно было успешно распространено и на стекла. [c.286]


Смотреть страницы где упоминается термин Дебая исследования структуры полимеров: [c.144]    [c.144]   
Физикохимия полимеров Издание второе (1966) -- [ c.98 ]




ПОИСК





Смотрите так же термины и статьи:

Дебай

Полимеры исследование



© 2024 chem21.info Реклама на сайте